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Abstract

We consider a numerical approximation to the scattering of a high-frequency
plane wave by a sound soft convex polygon. By reformulating the domain
problem to a boundary problem, we approximate the solution on the bound-
ary by piecewise polynomials multiplied by waves. Using theory of the best
approximation of polynomials we aim to show an error bound and how it
varies with the number of mesh points and the polynomial degree. We dis-
cover that we can achieve exponential convergence, as well as seeing the
optimum values and ratios of the parameters involved.
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1 Introduction

1.1 Background

In engineering and physics there are many problems where the acoustic scat-
tering of objects in a medium by a given wave require simulating, for example
sonar and noise reduction. In a homogeneous medium the pressure P (x, t)
satisfies the wave equation

∇2P − 1

c2

∂2P

∂t2
= 0

where c is the wave speed in the medium. By considering only the time-
harmonic case with angular frequency ω, the pressure can be written as

P (x, t) = Re
(
u(x)e−iωt

)
The function u(x) is known as the complex acoustic pressure. By substi-

tuting this back into the wave equation we get the Helmholtz equation

∇2u + k2u = 0 (1.1)

Here

k :=
ω

c
=

2πf

c
=

2π

λ

where f is the frequency and λ is the wavelength of the incoming wave.
A result of Green’s second theorem is that if (1.1) is satisfied in a domain
D with boundary ∂D, the solution u(x) must satisfy the following integral
equation for all x ∈ D with x 6= x0,

u(x) = G(x0,x) +

∫
∂D

[
G(y,x)

∂u

∂n
(y)− u(y)

∂G(y,x)

∂n(y)

]
ds(y)

where

G(x,x0) := − i

4
H

(1)
0 (k|x− x0|)

is a fundamental solution of the Helmholtz equation. The function H
(1)
0 is

the Hankel function of the first kind of order zero, and its real and imaginary
parts are Bessel functions. Note the expression n(y) denotes the normal
direction at y, and the expression
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∂G(y,x)

∂n(y)

is the rate of increase of G(y,x) as y moves off the boundary in the direction
n(y). The integral is sometimes called a Green’s representation formula, and
has the crucial property that if we know the values of u and ∂u

∂n
on ∂D, we

have an explicit formula for computing the solution throughout the domain
D, though not on ∂D.

The boundary condition considered for this dissertation is the ’sound-soft’
condition u = 0 on the boundary of a convex polygon Ω, and D = R2\Ω.
This removes one of the terms of the integral equation, and additionally
removes the complication that the integral equation does not hold when
x ∈ ∂D. Thus the problem now becomes to solve the following boundary
integral equations

u(x) = G(x0,x) +

∫
∂D

G(y,x)
∂u

∂n
(y)ds(y), x ∈ D

0 = G(x0,x) +

∫
∂D

G(y,x)
∂u

∂n
(y)ds(y), x ∈ ∂D

The second equation is an integral equation of the first kind for ∂u
∂n

, which
once solved gives us ∂u

∂n
on ∂D and thus enables us to calculate the value

of u(x) throughout D. Furthermore, we have reduced an unbounded 2D
problem to a finite 1D problem.

There is one further condition on the solution u. We consider our incident
field to be an acoustic plane wave of frequency k approaching in the direction
d = (sin θ,− cos θ) where θ is the anticlockwise angle from the downward
vertical. Thus ui(x) = eix.d, and we define the scattered field us := u − ui

which must satisfy the Sommerfeld radiation condition

lim
r→∞

r
1
2

(
∂us

∂r
(x)− ikus(x)

)
= 0

where r = |x| and the limit holds uniformly in all directions x
|x| .

This condition is equivalent to saying that from a great distance the
waves scattered by the polygon are roughly like a a single source. This is
analogous to waves on a pond, where the superposition of many sources of
ripples of varying strengths looks similar to a single source when viewed
from a distance. This results in almost radial waves of frequency k, and
so us ≈ Aeikr, which leads to the term in brackets tending to zero. We
note further that the only waves scattered by the polygon are those in the
finite band of waves which actually hit the object, and thus a finite amount of
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wave energy is scattered. When this scattered energy is distributed uniformly
across a circle of radius r, the modulus of |us| should tend as r

1
2 .

In [1] it is shown that the integral equation can be reformulated as

1

2

∂u

∂n
+

∫
∂D

(
∂Φ(x,y)

∂n(x)
+ iηΦ(x,y)

)
∂u

∂n
ds(y) = f(x)

where I is the identity operator, f = ∂ui

∂n
(x) + iηui(x), and Φ(x,y) =

−G(x,y). The parameter η ensures a unique and non-trivial solution, whereas
the original problem could be solved by u(x) ≡ 0 which is clearly not the
solution for a scattered wave.
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1.2 Motivation

To solve the boundary integral equation the edge is discretised into a mesh
and we consider a basis function on each mesh cell. Using a uniform mesh
to solve the boundary integral equation typically requires the number of
mesh points to grow linearly with the wavenumber k, which results in a
matrix system with O(k2) entries, each of which is an integral which must
be accurately calculated. This results in a fast-growing computational cost
and memory cost, and is not considered very effective.

In terms of accuracy, when the basis functions are piecewise constants
the error is only proportional to n−1, though for a mesh which is tighter
near to the corners of the polygon and order p polynomials are used on each
mesh cell, the error decreases proportional to n−(1+p) (see [2]). However this
method still requires n to grow in proportion to k.

In [1] a modification to the method showed that if the leading order
behaviour (i.e. the reflected wave on sides that are lit) is removed, with
use of a graded mesh which is very tight near the corners and by using
piecewise polynomials multiplied by plane waves as an approximation space,
the number of mesh points for a required level of accuracy grows only with
log k.

If we parameterise the boundary of length L by the variable s moving
in an anticlockwise direction around the polygon, the method used in [1]
describes the behaviour of ∂u

∂n
along the boundary, namely on each edge

1

k

∂u

∂n
(s) = Ψ(s) +

i

2

[
eiksv+(s) + e−iksv−(s)

]
, s ∈ [0, L]

where

Ψ(s) =

{
2
k

∂ui

∂n
(x(s)), if x(s) is illuminated

0 if x(s) is in shadow

is the physical optics approximation to ∂u
∂n

, and v±(s) are polynomials on
each edge. Theory shows that these polynomials and all their derivatives are
highly peaked near the corners of the polygon and rapidly decay away from
the corners. In particular, as s moves on a given edge, v+(s) is highly peaked
on the first corner of that edge and decays towards the second. Likewise
v−(s) is very small near to the first corner and becomes highly peaked at the
second, so there is a seperate polynomial for each peak.

However an issue with the method as computed is that the approximation
space is difference for every value of n, and there is no notion of subspace
except in the limit as N → ∞. If however the approximation space de-
termined by n and p in some sense contained a number of approximation
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spaces determined by lesser values of n and p, then it could be seen that
the approximation space tends to the solution space. Furthermore, standard
results about normed spaces hold in such a situation (e.g. there exists a
best approximation which minimises the error, the error term is orthogonal
to the approximation space and the related equations to solve are relatively
simple), and the convergence rate with respect to n and p can be calculated
separately.
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1.3 Overview

In section 2.1 we will consider the error in approximating over [−1, 1] a func-
tion which is analytic in a domain around [−1, 1]. The best polynomial
approximation will be taken using Chebyshev polynomials and the error cal-
culation will be minimised.

In section 2.2 we will use the results from section 2.1 to find the minimum
error for a problem on a geometric mesh, and seek to minimise the error
bound with respect to the parameters.

In section 2.3 we consider a function which is singular at the origin and
seek an error bound from a geometric mesh, using results from the previous
two sections.

In section 3.1 we will review current theory about the normal derivative
of the total field of a polygon scattering problem, and show how it relates to
the work done in the previous sections.

In section 3.2 we take a program designed to solve the hp problem, and
taking large values of the parameters as an ’exact’ solution, we compare how
the approximation error varies with the number of degrees of freedom. We
then present the results.

In section 3.3 we analyse the results and compare the deductions, theory,
and global progress in the field for an overall conclusion.

In section 3.4 we shall describe ideal avenues of further research to improve
upon or verify ideas that have resulted from this project.
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2 Part I: Theory of hp-approximants in 1-D

2.1 Best Polynomial Approximation of Analytic Func-
tions in the L2-Norm

Definition 2.1 We denote by Eρ, ρ > 1 the ellipse

Eρ :=
{
z ∈ C| |z − 1|+ |z + 1| < ρ + ρ−1

}
Definition 2.2 The space of polynomials of degree ≤ p is denoted by Pp

Definition 2.3 The nth Chebyshev polynomial cos(n cos−1(x)) is denoted by
Tn(x).

Lemma 2.4 Let ρ > 1 and u(z) be analytic and bounded in Eρ with bound
M . Then the best approximation up(x) ∈ Pp to u(z) over [-1,1] satisfies

‖u− up‖L2[−1,1] ≤ M2
√

2
ρ−p

ρ− 1

Proof. Tn(x) has polynomial degree n, so a basis for Pp is {T0(x), T1(x) . . . Tp(x)}.
Tn(x) is analytic in Eρ∀n so we can express u(z) in the form u(x) =

∑′∞
n=0 anTn(x)

for some complex constants an, and equivalently up(x) =
∑′p

n=0 anTn(x). So
the L2 error between the two functions is the 2-norm of the function

v(θ) =
∞∑

n=p+1

an cos(nθ) = (u− up)(x)

where θ = arccos(x). The function v(θ) is analytic, 2π periodic and even,
and thus can be expressed as a Fourier Cosine Series with coefficients

an =
1

π

∫ π

−π

v(θ) cos(nθ)dθ.

Now in the complex plane, x = cos(θ) = z+z−1

2
, meaning x analytic in Eρ

is equivalent to z analytic in the annulus ρ−1 < |z| < ρ. So

an =
1

2πı

∮
|z|=1

(u− up)

(
z + z−1

2

)
zn−1dz+

1

2πı

∮
|z|=1

(u− up)

(
z + z−1

2

)
z−n−1dz

and by Cauchy’s Integral Theorem
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=
1

2πı

∮
|z|=r1

(u− up)

(
z + z−1

2

)
zn−1dz+

1

2πı

∮
|z|=r2

(u− up)

(
z + z−1

2

)
z−n−1dz

for some ρ−1 ≤ r1, r2 ≤ ρ. Therefore

|an| ≤
1

2π

∮
|z|=r1

∥∥∥∥(u− up)

(
z + z−1

2

)∥∥∥∥∥∥zn−1
∥∥ dz+

1

2π

∮
|z|=r2

∥∥∥∥(u− up)

(
z + z−1

2

)∥∥∥∥∥∥z−n−1
∥∥ dz

≤ M
(
rn
1 + r−n

2

)
.

This bound holds for all r1, r2 s.t. ρ−1 ≤ r1, r2 ≤ ρ, and is clearly
minimised when r1 = ρ−1, r2 = ρ, meaning |an| ≤ 2Mρ−n. This leads to

‖u− up‖2
L2[−1,1] =

∫ 1

−1

(
∞∑

n=p+1

anTn(t)

)2

dt

≤
∫ 1

−1

(
∞∑

n=p+1

|an| |Tn(t)|

)2

dt ≤
∫ 1

−1

(
∞∑

n=p+1

|an|

)2

dt

= 2

(
∞∑

n=p+1

|an|

)2

≤ 2

(
∞∑

n=p+1

2Mρ−n

)2

= 8M2

(
ρ−p

ρ− 1

)2

Therefore

‖u− up‖L2[−1,1] ≤ M2
√

2
ρ−p

ρ− 1

�
This is a standard bound from which current approximation theories are

developed. However it can be improved by noting that the proof effectively
approximates Tn(x) by 1 ∀n. Given it is an oscillatory function (and increas-
ingly oscillatory with increasing n), this can be improved upon by taking
the complete product of the infinite sum and then integrating the Chebyshev
products exactly.

‖u− up‖2
L2[−1,1] =

∥∥∥∥∥
∞∑

n=p+1

anTn(t)

∥∥∥∥∥
2

L2[−1,1]
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=

∫ 1

−1

(
∞∑

n=p+1

anTn(t)

)(
∞∑

n=p+1

anTn(t)

)
dt

=
∞∑

n=p+1

|an|2
∫ 1

−1

T 2
n(t)dt + 2

∞∑
n=p+1

∞∑
m=n+1

Re(anam)

∫ 1

−1

Tn(t)Tm(t)dt

Chebyshev polynomials are orthogonal with respect to the norm

(f, g) =

∫ 1

−1

f(t)ḡ(t)√
1− t2

dt

but not the L2[−1, 1] norm. In this case, with an appropriate coordinate
change, ∫ 1

−1

Tn(t)Tm(t)dt =

∫ π

0

cos(mx) cos(nx) sin(x)dx

=


1− 1

4n2−1
if m = n

0 if m + n is odd

−
[

1
(m−n)2−1

+ 1
(m+n)2−1

]
if m + n is even

Thus

∞∑
n=p+1

|an|2
∫ 1

−1

T 2
n(t)dt + 2

∞∑
n=p+1

∞∑
m=n+1

Re(anam)

∫ 1

−1

Tn(t)Tm(t)dt

=
∞∑

n=p+1

|an|2
(

1− 1

4n2 − 1

)
− 2

∞∑
n=p+1

∞∑
k=1

Re(anan+2k)

[
1

4k2 − 1
+

1

4(n + k)2 − 1

]

≤
∞∑

n=p+1

|an|2
(

1− 1

4n2 − 1

)
+

∞∑
n=p+1

∞∑
k=1

2 |Re(anan+2k)|
[

1

4k2 − 1
+

1

4(n + k)2 − 1

]
which is an equality for non-trivial cases. These sums are not possible to
evaluate exactly, even given the bounds on |an|. But by noting 1− 1

4n2−1
≤ 1,

2 |Re(anan+2k)| ≤ 8M2ρ−2n−2k, and that each denominator can be bounded
above by the first denominator, we find

∞∑
n=p+1

∞∑
k=1

2 |Re(anan+2k)|
[

1

4k2 − 1
+

1

4(n + k)2 − 1

]

≤
∞∑

n=p+1

8M2

[
1

3
+

1

4(n + 1)2 − 1

]
ρ−2n

∞∑
k=1

ρ−2k
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=
8M2

ρ2 − 1

∞∑
n=p+1

[
1

3
+

1

4(n + 1)2 − 1

]
ρ−2n

≤ 8M2

ρ2 − 1

[
1

3
+

1

4(p + 2)2 − 1

] ∞∑
n=p+1

ρ−2n

≤ 8M2ρ−2p

(ρ2 − 1)2

[
1

3
+

1

4(p + 2)2 − 1

]
and so

‖u− up‖L2[−1,1] ≤

√
4M2ρ−2p

ρ2 − 1
+

8M2ρ−2p

(ρ2 − 1)2

[
1

3
+

1

4(p + 2)2 − 1

]

=
2Mρ−p

ρ− 1


√

ρ2 − 1
3

+ 2
4(p+2)2−1

ρ + 1


This is better than the previous bound by a factor of

Kρ,p :=

√
ρ2 − 1

3
+ 2

4(p+2)2−1

(ρ + 1)
√

2

which, as can be shown by taking limits of ρ and p, satisfies

1√
12

< Kρ,p <
1√
2
.

Specifically, Kρ,p is an increasing function in ρ and a decreasing func-
tion in p, which are in the ranges (1,∞) and [0,∞) respectively. The case
ρ = ∞ corresponds to a function analytic everywhere in the complex plane
with an approximation error of zero for any p. This is because the definition
of u(z) was that it was a bounded analytic function in Eρ, and the only
bounded analytic function in the entire complex plane is the constant func-
tion, which would be approximated identically. This then fits with all but
the first Chebyshev coefficients being necessarily zero.
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2.2 hp-approximation, a Case Study

Definition 2.5 A geometric mesh of parameter σ and size n on [0, β] has
mesh points x0 = 0, xi = βσn−i for i = (1, . . . , n), where β > 0, σ ∈ (0, 1), n ∈
N

Definition 2.6 Considering a mesh [0 = x0, x1, . . . , xn = 1], Πp,nu denotes
the best approximation to u in the L2 norm on [0, 1] from the space Sp,n :={
v : [x1, 1] → R : v|(xi,xi+1) ∈ Pp, i = 0, . . . , n− 1

}
Consider the case when u(z) is analytic and bounded (with bound M) for

Re(z) > 0, and is approximated on a general mesh on [x1, 1] by Πp,nu and
by zero on [0, x1] for reasons which shall soon become apparent. Clearly

‖u− Πp,nu‖2
L2[0,1] =

∫ 1

0

|u(t)− Πp,n|2 dt

≤
∫ x1

0

|u(t)|2 dt +
n−1∑
i=1

∫ xi+1

xi

|u(t)− Πp,nu(t)|2 dt

≤ M2x1 +
n−1∑
i=1

∫ xi+1

xi

|u(t)− Πp,nu(t)|2 dt

The results of the previous section can be applied to each mesh cell (save
for the first) by applying an affine transformation, mapping the cell [xi, xi+1]
to [−1, 1]. Because it is the leftmost point of analyticity, we use the origin
as the leftmost point of the ellipse, thereby determining ρi for each mapped
cell and thus the accuracy of the approximation. It is clear that the function

f(x) =
2x− xi+1 − xi

xi+1 − xi

is the unique affine transformation that maps the mesh cell [xi, xi+1] to
[−1, 1]. Note that the first cell can not follow this method as the ellipse
is collapsed onto [−1, 1], resulting in ρ0 = 1 and infinite error. Hence we
approximate by zero.

For all other mesh cells, the origin is mapped to the co-ordinate

−xi+1 + xi

xi+1 − xi

= −1

2

(
ρi + ρ−1

i

)
which results in a quadratic equation with largest root (i.e. the root neces-
sarily larger than 1)

ρi =

√
xi+1 +

√
xi√

xi+1 −
√

xi
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and so the L2 error on the transformed approximation is bounded by

M2
√

2
ρ−p

i

ρi − 1
= M

√
2

(√
xi+1 −

√
xi√

xi+1 +
√

xi

)p √xi+1 −
√

xi√
xi

A simple argument to do with areas shows the square of the L2 error
on [−1, 1] is a linear multiple of the square of the L2 error on the original
mesh. The appropriate scale factor to apply is xi+1−xi

2
, meaning the total

error bound becomes

M2x1 +
n−1∑
i=1

∫ xi+1

xi

|u(t)− Πp,nu(t)|2 dt

≤ M2

(
x1 +

n−1∑
i=1

(√
xi+1 −

√
xi√

xi+1 +
√

xi

)2p
(√

xi+1 −
√

xi

)2
xi

(xi+1 − xi)

)
(2.1)

This applies for any mesh on [0, 1], and so in theory it would be possible
to differentiate w.r.t. the xi and thus calculate the optimum mesh of size
n on which we approximate with piecewise polynomials of degree ≤ p. But
as is clear from the expression above, the resulting system is nonlinear and
would be very difficult to solve (though an iterative process might be possible,
noting that xn = 1 and the expressions for the derivatives are identical for
i = 2, 3, . . . n− 1). Instead we shall apply a geometric mesh of parameter σ,
which makes the sum far easier to evaluate largely due to the simplification:

ρi =
1−

√
σ

1 +
√

σ
∀i

The overall error bound becomes

≤ M2

(
σn−1 +

n−1∑
i=1

(
1−

√
σ

1 +
√

σ

)2p

σn−i−1
(
1−

√
σ
)2 (

σ−1 − 1
))

= M2

(
σn−1 +

(
1−

√
σ

1 +
√

σ

)2p (
1−

√
σ
)2 (

σ−1 − 1
)
σn−1

n−1∑
i=1

σ−i

)

= M2

(
σn−1 +

(
1−

√
σ

1 +
√

σ

)2p (
1−

√
σ
)2

(1− σ) σn−2 σ−1 (σ1−n − 1)

σ−1 − 1

)

16



= M2

(
σn−1 +

(
1−

√
σ

1 +
√

σ

)2p
(1−

√
σ)

2
(1− σn−1)

σ

)
Thus we get the final result

‖u− Πp,nu‖L2[0,1] ≤ M

(
σn−1 +

(
1−

√
σ

1 +
√

σ

)2p
(1−

√
σ)

2
(1− σn−1)

σ

) 1
2

A key point to note is the conditions on u(z). Initially it was stated that
u should be analytic and bounded for Re(z) > 0, but the mathematics used
for this bound merely require u to be analytic in a set of ellipses centred on
the midpoints of the mesh cells. A simple geometrical argument shows that
the last ellipse encompasses all previous ellipses, meaning for this bound to
hold we only need u analytic in

{z ∈ C| |z − σ|+ |z − 1| < 1 + σ}

Now when it comes to approximating u(z) on [0, 1], there are two expo-
nentially decaying terms, one in p and one in n. It is sensible to have these
decay at roughly the same rate, so that increasing either variable will have
the same increase in error. It can be shown that this is the optimal situa-
tion, because if one variable is significantly larger than the other, increasing
the lesser one makes the biggest decrease in error. Consider the number of
degrees of freedom N = n(p + 1) as fixed and minimise the decaying terms
w.r.t. σ. The relevant equation for balancing the terms is

σn ≈
(

1−
√

σ

1 +
√

σ

) 2N
n

Equating both sides and taking logarithms reveals

n =

√
2N

log σ
log

(
1−

√
σ

1 +
√

σ

)
and the decaying term becomes

σ

r
2N

log σ
log

“
1−
√

σ
1+
√

σ

”

It would seem sensible to minimise this term with respect to σ and thus
maximise the decay rate. Assuming this function has a stationary value in
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(0, 1), the function resulting from taking the logarithm would have a station-
ary value at the same point. Thus

log σ

r
2N

log σ
log

“
1−
√

σ
1+
√

σ

”

=

√
2N log

(
1−

√
σ

1 +
√

σ

)
log σ

Squaring this function will not change the stationary value of σ, and will
make the result much easier to differentiate. Though it is obvious at this
point that the constant 2N can be removed. Noting that

d

dσ
log
(
1±

√
σ
)

=
±1

2
√

σ (1±
√

σ)

we find

d

dσ
log

(
1−

√
σ

1 +
√

σ

)
log σ

=
1

σ
log

(
1−

√
σ

1 +
√

σ

)
+ log σ

(
−1

2
√

σ (1−
√

σ)
− 1

2
√

σ (1 +
√

σ)

)
=

1

σ
log

(
1−

√
σ

1 +
√

σ

)
− log σ√

σ (1− σ)

The minimum value is therefore reached when

(1− σ) log

(
1−

√
σ

1 +
√

σ

)
=
√

σ log σ

which is at precisely σ = σopt =
(√

2− 1
)2 ≈ 0.17 which matches the result

in [3]. Finally, with a value of σ we can go back to the previous result for
the value of n to see how it should grow with N :

n =

√
2N

log σopt

log

(
1−√σopt

1 +
√

σopt

)
=
√

N

which is a surprisingly compact result, as is the optimum value of σ. More
generally, there is a constant Cσ such that the optimal choice of n and p is

n = CσN
1
2 (p + 1) =

1

Cσ

N
1
2

or equivalently
n = C2

σ(p + 1)
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where

Cσ :=

√
2

log σ
log

(
1−

√
σ

1 +
√

σ

)
Note Cσ is a strictly increasing function of σ over (0, 1). Note fur-

ther that I have excluded the factor Kρ,p from the working out simply be-
cause it is a constant multiplied onto the second term in the expression for
‖u− Πp,nu‖L2[0,1] and does not affect the results of the decay rates or the
optimum value of σ.
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2.3 hp-approximations of Smooth Functions

We now draw our attention to the case when u is analytic for Re(z) > 0 and
is approximated over [0, β] by a geometric mesh as in the previous section,
and for some α ∈ (0, 1

2
), M > 0, u(z) satisfies

|u(z)| ≤

{
M |z|−α , |z| ≤ 1

M |z|−
1
2 , |z| ≥ 1

or, more generally

|u(z)| ≤ F (|z|)

where F is decreasing on (0,∞). The error in approximating u by zero on
the first cell is

‖u‖2 ≤
∫ x1

0

M2x−2αdx = M2

[
x1−2α

−2α

]x1

0

= M2 x1−2α
1

1− 2α
< ∞

For the other mesh cells, an important issue arises. If we approximate
with Chebyshev polynomials as before, the ellipse centred on each cell can
not extend to the origin, because then |u(z)| is not bounded in the ellipse.
So we need to choose a point somewhere between the origin and the mesh
cell to mark as the leftmost point of the ellipse.

Consider a mesh cell [xa, xb] where the leftmost point is A. It can be
shown that the appropriate ellipse parameter ρ satisfies

ρ2 +

(
4A− 2xa − 2xb

xb − xa

)
ρ + 1 = 0

ρ =

(√
xb − A +

√
xa − A

)2
xb − xa

Results from section 2.2 show that the L2 error in approximating u(z) on
a given mesh cell is bounded by

ρ−p

ρ− 1
M ′2

√
xb − xa

where M ′ is the maximum modulus of u(z) in the ellipse, so in this case
M ′ = F (A). So to minimise the bound, we need to minimise

ρ−p

ρ− 1
F (A) (2.2)

with respect to A. Key points to note from this expression are
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• As A → 0, F (A) = A−α →∞

• As A → xa, ρ → 1 and so 1
ρ−1

→∞

Therefore there exists a minimum value between 0 and xa, which will
occur at a stationary point. In fact there is only one stationary point in
(0, xa), and the function is meaningless outside it. Differentiating w.r.t. A
results in the following equation to be solved

ρ′

ρ

(
1 + p +

1

ρ− 1

)
=

F ′(A)

F (A)
(2.3)

where we have assumed that F is smooth. Particular results are

dρ

dA
= − ρ(xb − xa)√

(xa − A)(xb − A)

and, if F (A) = MA−α,

F ′(A)

F (A)
=
−α

A

However manipulating (2.3) to remove the square roots and get an equa-
tion for A is very difficult and results in a cubic equation with quite com-
plicated coefficients. It is much faster to differentiate (2.2) with respect to
ρ which will allow us to find the value of ρ at which the error is minimised.
Firstly, we must find A in terms of ρ:

ρ =

(√
xb − A +

√
xa − A

)2
xb − xa

=
xb + xa − 2A + 2

√
A2 − (xa + xb)A + xaxb

xb − xa

=
v − 2A + 2

√
A2 − Av + 1

4
(v2 − w2)

w

ρw − v + 2A = 2

√
A2 − Av +

1

4
(v2 − w2)

where v = xb + xa, w = xb − xa. Squaring and cancelling terms reveals

4ρwA = 2ρwv − w2 − ρ2w2

A =
v

2
− w

4
(ρ + ρ−1)
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and so (2.2) becomes

ρ−p

ρ− 1

(v

2
− w

4
(ρ + ρ−1)

)−α

(2.4)

Note that for any three functions f, g, h the chain rule dictates that

(fgh)′ = fgh

(
f ′

f
+

g′

g
+

h′

h

)
and thus the product fgh is only stationary when the term in the brackets
is zero. For (2.4) this results in

α(ρ− ρ−1)

ρ2 − 2 v
w
ρ + 1

+
p

ρ
+

1

ρ− 1
= 0 (2.5)

This clearly results in a cubic equation for ρ for which a simple expres-
sion for the solution appears impossible, and even if it were simple then the
expression for A would likely be unpleasant. But there is one interesting
characteristic - the points of the mesh, xa and xb, only occur as ratios of
their sum and difference. This means that if a geometric mesh is used, the
equation for ρ is identical for all mesh points:

v

w
=

xb + xa

xb − xa

=
βσn−i−1 + βσn−i

βσn−i−1 − βσn−i
=

σn−i−1

σn−i−1

1 + σ

1− σ
=

1 + σ

1− σ
∀i

This means if one could numerically find the root of the equation, then
the value of ρ would be known for all i meaning the error calculation is
simplified in the same way as in section 2.2. Furthermore,

A =
v

2
− w

4
(ρ + ρ−1) = βσn−i−1

(
1 + σ

2
− 1− σ

4
(ρ + ρ−1)

)
meaning the minimum point A has a constant ratio to each of xa and xb.
We define θ such that A = xaθ = βσn−iθ (or equivalently θ = σb for some
b ∈ R+). This gives

ρ(A) =
(
√

βσn−i−1 − βσn−iθ +
√

βσn−i − βσn−iθ)2

βσn−i−1 − βσn−i

=
(
√

1− σθ +
√

σ − σθ)2

1− σ

So back on the original problem, if we assume we know the value of ρ (or
equivalently θ), and define Ai = βσn−iθ, results from the previous chapter
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show us that the square of the L2 error in the best approximation is bounded
above by ∫ βσn−1

0

F (x)2dx +
4ρ−2p

(ρ− 1)2

n−1∑
i=1

F (Ai)
2βσn−i−1(1− σ)

∫ βσn−1

0

F (x)2dx +
4ρ−2p(1− σ)

(ρ− 1)2
βσn−1

n−1∑
i=1

F (Ai)
2σ−i

The function F (Ai) has been left in because for the specific problem of
this chapter the exponent for (2.2) changes at the point A = 1. The means
the root of (2.5) is different for A < 1 and A > 1 meaning to find the
minimum bound we need to solve two cubic equations. We continue with
the approximation using the first root, and recall that the F we consider is
strictly decreasing, so we only need to find out when Ai = 1 to determine
what power it is raised to for each summand.

Ai = 1 ⇔ βσn−i+b = 1 ⇔ σi = βσb+n

i =
log β

log σ
+ b + n

which is not necessarily an integer, so we define I as the largest integer for
which Ai ≤ 1 for all i ≤ I. To be precise,

I =

⌊
log β

log σ
+ b + n

⌋
=

⌊
log β

log σ
+ b

⌋
+ n

Combining all these results we find

‖u− Πp,nu‖2
2 ≤

M2β1−2ασ(n−1)(1−2α)

1− 2α
+

4M2βρ−2p(1− σ)σn−1

(ρ− 1)2
×

(
I∑

i=1

β−2ασ−2α(n+b)σ−i(1−2α) +
n−1∑

i=I+1

β−1σ−(n+b)σiσ−i

)
where the sums evaluate to

β−2ασ−2αnθ−2α σ2α−1
(
σ(2α−1)I − 1

)
σ2α−1 − 1

+ β−1σ−nθ−1(n− I − 2)

giving the overall bound as
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M2β1−2ασ(n−1)(1−2α)

1− 2α
+

4M2β1−2αρ−2p(σ−1 − 1)σ(n−1)(1−2α)θ−2α

(ρ− 1)2

σ(2α−1)I − 1

σ2α−1 − 1

+
4M2ρ−2p(σ−1 − 1)θ−1(n− I − 2)

(ρ− 1)2

=
M2β1−2ασ(n−1)(1−2α)

1− 2α
+

4M2β1−2αρ−2p(σ−1 − 1)σ(n−I−1)(1−2α)θ−2α

(ρ− 1)2

1− σ(1−2α)I

σ2α−1 − 1

+
4M2ρ−2p(σ−1 − 1)θ−1(n− I − 2)

(ρ− 1)2

Note the expressions (n− I−2) and σ(n−I−1)(1−2α). By the definition of I

above, (n−I) =
⌊

log β
log σ

+ b
⌋

is always constant with respect to n. This means

that though there are σ terms present in the second term, that term remains
constant with changing n. So again there are two different decay rates for
the error terms, and it would make sense to balance them in the same way
as before. Setting N = n(p + 1) again,

σn(1−2α) ≈ ρ−2(p+1)

n(1− 2α) log σ = 2
N

n
log ρ−1

n =

√
2N

1− 2α

log ρ−1

log σ

A difficulty with this is that ρ is unknown, as it is the solution of (2.5)
and so is a function of α, p and σ. Equivalently we have the expression

ρ =
(
√

1− σθ +
√

σ − σθ)2

1− σ

where θ is a function of the same variables as ρ. We know θ ∈ (0, 1) which
corresponds to

ρ ∈
(

1,
1−

√
σ

1 +
√

σ

)
but little else of even approximations to the best value of ρ. However if we
assume we have chosen a value of θ (meaning ρ and Ai are ’known’), the
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theory predicts that the resulting bound will be non-optimal, so minimising
it does not violate the bound. So the ideal decaying term is bounded by

σ

q
2N

1−2α
− log ρ
log σ

and minimising it over σ is equivalent to minimising

log ρ log σ

which we can differentiate to attempt to find the minimum value. This results
in having to solve the following equation

σ log σ

(
1

1− σ
+

θ√
1− σθ

√
σ − σθ

− 1√
σ − σθ(

√
1− σθ −

√
σ − σθ)

)
= 2 log(

√
1− σθ −

√
σ − σθ)− log(1− σ)

Unfortunately this appears to be impossible algebraically, so like the cubic
root, the optimum value of σ is only obtainable numerically.
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3 Part II: High Frequency Boundary Element

Methods for Scattering by Convex Polygons

3.1 Scattering by Convex Polygons and the Analytic
Solution

In the case of a sound-soft smooth shape, when an incident plane wave hits
the object there is primarily a reflection and a small amount of diffraction
which decays exponentially. However the sharp corners of a polygon cause a
strong diffraction, such that the theory predicts u to be unbounded at each
corner. In fact it is shown in [steve and simon paper] that the polynomials
on each edge satisfy

k−n
∣∣∣v(n)
± (s)

∣∣∣ ≤ { Cn(ks)−α±−n, ks ≤ 1

Cn(ks)−
1
2
−n, ks ≥ 1

where

α± := 1− π

a±

and a± is the external angle at the corner at which v± is highly peaked.
Because the polygon is convex, this gives α± ∈ (0, 1

2
). Thus the work done in

the previous section will give a suitable bound on the error between v± and
the approximation polynomials. Recalling that on each edge

1

k

∂u

∂n
(s) = Ψ(s) +

i

2

[
eiksv+(s) + e−iksv−(s)

]
and that we know Ψ precisely, if we denote φ = 1

k
∂u
∂n

and φ′ as its approxi-
mation, as well as v′± the approximation to v±, we can see

‖φ− φ′‖ =

∥∥∥∥Ψ +
i

2

[
eiksv+ + e−iksv−

]
−Ψ− i

2

[
eiksv′+ + e−iksv′−

]∥∥∥∥
=

∥∥∥∥ i

2

[
eiks[v+ − v′+] + e−iks[v− − v′−

]∥∥∥∥
≤ 1

2

∥∥v+ − v′+
∥∥+

1

2

∥∥v− − v′−
∥∥

and so we have a bound on the approximation to the normal derivative of u.
For an overall bound for the whole shape we would need an accurate

solution for the problem in the previous section for each value of α. However
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it would suffice to use the maximum value of α determined by the minimum
angle in the polygon, and then multiply the bound by the number of sides.
In fact, under that assumption we get

‖φ− φ′‖ ≤ B
∥∥v+ − v′+

∥∥
where B is the number of sides of the polygon.
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3.2 A High Frequency hp-version Galerkin Method

The hp-version Galerkin Method (convpolyhp.m) composed by Dr. S. Lang-
don works to solve the integral equation

(I + K)
∂u

∂n
= f on ∂D

by removing the leading order behaviour (i.e. the reflected wave) and trying
to approximate the remaining function φ(s) by its composition

φ(s) = eiksv+(s) + e−iksv−(s), s ∈ [0, L]

where v+(s) and v−(s) are polynomials in s. The program (implemented
in Matlab 7) solves the integral equation for the coefficients of the basis
functions of Legendre polynomials of degree ≤ p on a geometric mesh of
size n and parameter σ = 0.15. The program computes the products of all
the basis functions using numerical quadrature rules and solves the resulting
matrix system.

The polygon in question is a right-angled triangle with acute angles of π
4

and straight sides of length 2π, and with an incident wave travelling perpen-
dicular to the hypotenuse of the triangle. This situation is highly symmetric,
and has the minimum number of sides required to fit the scattering problem.
This choice minimises the number of degrees of freedom (2n(p + 1) per side)
and thus minimises the number of matrix entries, enabling comparison of
higher frequencies with theoretical results without requiring unfeasibly long
running times.

Definition 3.1 (p,n) denotes the approximation space of piecewise polyno-
mials of degree ≤ p on a geometric mesh of size n, where the mesh parameter
σ is fixed

When n is increased, only the first mesh cell is split and all others re-
mained the same. As Pp ⊂ Pp+1 for any p, we have the statement on sub-
spaces

(p, n) ⊆ (p + a, n + b) ∀a, b ∈ N0

However in the theory we have sought the minimum error for a fixed
number of degrees of freedom, N = n(p + 1). For a given N , the number of
possible approximation spaces with exactly N degrees of freedom is equal to
the number of divisors of N . For example, when N = 6 the possible spaces
are
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(1, 6), (2, 3), (3, 2), (6, 1)

But to compare errors in the solution, we must realise that as n and p
increase, the numerical solution tends to the analytic solution. So to make an
estimate of the error we need an approximation space with large n and p such
that all other approximation spaces are contained in it. The smallest space
which contains all possible spaces with N degrees of freedom is the space
(N, N), which has N2 degrees of freedom and so is a much more accurate
result.

For the programming part of this project we will run the code for various
subspaces of (8, 8), checking all possible spaces with 1-6, and 8 degrees of
freedom, as well as selected ones with 12, 16, 20 and 24 degrees of freedom
that are still subspaces. (8, 8) is as far as Matlab can reasonably run programs
for the wavenumbers chosen, without requiring weeks of total running time.
Furthermore, as (8, 8) is the approximation space used for a comparison, the
subspaces can not get too ’close’ to this space because the approximate error
in the subspace (8, 8) is zero.

Recalling from section 2.2 the optimal ratio between n and p for a given
σ was

n = C2
σ(p + 1)

where

Cσ :=

√
2

log σ
log

(
1−

√
σ

1 +
√

σ

)
In the code, the value of σ is taken to be 0.15 rather than 0.17 because

some overrefinement is recommended (see [4]). This gives the value of Cσ as
approximately 0.9282, i.e. the theory suggests that for a minimised error we
need

n ≈ 0.862(p + 1)

Given that n and p+1 are integers, this ratio can only be roughly met up
until n = p = 6. For large n the ratio can be met much more closely, and this
predicts that the computed results should show an ideal ’direction’ in which
the error decreases fastest. Note that the theory predicts an exponential
convergence with respect to the degrees of freedom.
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3.3 Numerical Results

The program was ran for wavenumbers 1-6, 8, 11 and 16. The increasing
computing time meant that showing the changes as k grows geometrically
was only plausible for a geometric progression of approximately

√
2. Thus

the sequence 2, 3, 4, 6, 8, 11, 16 should show some level of example of how
k affects convergence.

For each wavenumber, the ’exact’ solution taken was the one in the space
(8, 8). All possible degrees of freedom less than or equal to 8 are included,
as well as ones up to 24 degrees of freedom. The latter ones will not be
fully represented, but the theory predicts that the best choice for a fixed
number of degrees of freedom is to have n and p close. Thus we should
have the most accurate approximation for degrees of freedom in the set
{9, 10, 12, 14, 15, 16, 18, 20, 24} without having to compare to the best ap-
proximation in the space (24, 24).

Another limiting factor is that these are relative errors compared to the
solution in the space (8, 8). The solutions in all subspaces should converge
to that solution, and so the relative errors would tend to zero and in fact be
identically zero when (8, 8) is compared to itself. To avoid this unneccessary
confusion, 24 degrees of freedom was chosen to be the highest value repre-
sented because it should not be close enough to (8, 8) for the relative error
to be affected, and it is the last value in the range [1, 64] that has 4 different
factorisations using numbers in the range [1, 8].

Relative errors for k = 1

n →
p 1.07 1.09 1.12 1.12 1.12 1.15 1.72 1.17
↓ 1.11 1.07 1.14 1.19 1.72 1.79 1.83 1.87

1.41 1.71 1.86 1.94 2.00 2.04 2.08 2.10
1.66 1.97 2.09 2.20 2.18 2.18
1.83 2.16 2.16 2.01
1.74 1.98 2.03 2.29
1.73 1.97 2.03
1.73 1.97 2.03
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Relative errors for k = 2

n →
p 0.96 0.88 0.79 0.74 0.63 0.60 0.54 0.49
↓ 0.84 0.70 0.61 0.54 0.49 0.43 0.39 0.35

0.67 0.49 0.38 0.31 0.26 0.22 0.19 0.17
0.47 0.26 0.18 0.16 0.18 0.19
0.32 0.22 0.18 0.08
0.33 0.13 0.09 0.09
0.34 0.13 0.09
0.34 0.13 0.09

Relative errors for k = 3

n →
p 0.97 0.91 0.82 0.76 0.70 0.62 0.59 0.51
↓ 0.87 0.72 0.61 0.53 0.48 0.42 0.38 0.33

0.68 0.49 0.38 0.30 0.26 0.23 0.22 0.22
0.47 0.26 0.22 0.24 0.27 0.29
0.34 0.30 0.25 0.15
0.34 0.19 0.16 0.15
0.34 0.19 0.16
0.34 0.19 0.16

Relative errors for k = 4

n →
p 0.99 0.97 0.89 0.81 0.77 0.72 0.68 0.65
↓ 0.91 0.79 0.70 0.63 0.58 0.54 0.51 0.47

0.75 0.60 0.51 0.46 0.42 0.40 0.38 0.38
0.58 0.42 0.38 0.37 0.38 0.38
0.46 0.39 0.36 0.33
0.47 0.35 0.33 0.33
0.47 0.35 0.33
0.47 0.35 0.33
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Relative errors for k = 5

n →
p 0.98 0.95 0.88 0.84 0.77 0.73 0.68 0.64
↓ 0.91 0.80 0.69 0.62 0.55 0.50 0.46 0.43

0.74 0.57 0.47 0.39 0.33 0.29 0.26 0.24
0.54 0.33 0.25 0.22 0.23 0.24
0.37 0.24 0.21 0.18
0.38 0.20 0.17 0.17
0.39 0.20 0.17
0.39 0.20 0.17

Relative errors for k = 6

n →
p 1.00 0.97 0.94 0.90 0.88 0.85 0.83 0.80
↓ 0.95 0.89 0.84 0.80 0.77 0.75 0.73 0.71

0.86 0.78 0.73 0.70 0.68 0.67 0.66 0.65
0.76 0.68 0.65 0.65 0.65 0.65
0.69 0.65 0.65 0.64
0.69 0.64 0.64 0.64
0.69 0.64 0.64
0.69 0.64 0.64

Relative errors for k = 8

n →
p 0.99 0.96 0.91 0.86 0.81 0.76 0.72 0.67
↓ 0.94 0.82 0.73 0.65 0.58 0.52 0.46 0.42

0.77 0.59 0.46 0.38 0.31 0.27 0.23 0.21
0.54 0.31 0.21 0.20 0.21 0.22
0.35 0.23 0.19 0.12
0.35 0.14 0.10 0.09
0.36 0.14 0.10
0.36 0.14 0.10
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Relative errors for k = 11

n →
p 1.00 0.96 0.94 0.88 0.85 0.78 0.76 0.70
↓ 0.95 0.85 0.75 0.67 0.60 0.54 0.48 0.44

0.79 0.61 0.48 0.39 0.32 0.26 0.23 0.20
0.55 0.31 0.21 0.19 0.21 0.22
0.35 0.24 0.19 0.09
0.34 0.12 0.06 0.05
0.35 0.12 0.06
0.35 0.12 0.06

Relative errors for k = 16

n →
p 1.00 0.97 0.95 0.90 0.88 0.82 0.80 0.74
↓ 0.97 0.88 0.79 0.71 0.64 0.58 0.52 0.48

0.82 0.64 0.51 0.41 0.33 0.28 0.24 0.21
0.57 0.33 0.22 0.20 0.22 0.23
0.35 0.25 0.20 0.08
0.34 0.11 0.05 0.02
0.35 0.11 0.05
0.35 0.11 0.05

Figure 3.1: Scatter plot demonstrating exponential convergence of error with
degrees of freedom
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3.4 Conclusions

Firstly, the results for k = 1 appear to be anomalous, as the error appears
to increase with the degrees of freedom rather than decrease. It is likely a
side-effect of choosing such a low parameter for the convpolyhp.m program,
which was intended for high frequencies. As a result there will be no further
comment on these results.

The graphs of degrees of freedom versus error indeed show an exponential
convergence. Finding an equation for the graphs was not done because they
were merely meant to confirm what has been theorised many times before.
In fact the worst error values for each degree of freedom show the same
convergence, though they have left out the cases when n or p are equal to 1,
and the surface plots indicate that those have the highest relative error.

The tables of numbers reveal a curious result. It appears the optimum
ratio of p to n, that is the fastest decay slope on the surface plots, is not
n < (p + 1) after all. It appears to be the other way round (i.e. values below
the diagonal are less than those above the diagonal), and the best results for
the degrees of freedom versus error plots show the best ratio is somewhere
around 0.7.

Perhaps the reason for this is that the results of section 2.2 do not apply to
the functions v±(s), because the results assume that the best approximation
on the first mesh cell is zero. Clearly that is not the case for such a singular
function, meaning the first term in the error bound is incorrect. Given that
a large amount of algebra resulted from that choice of approximation, it is
unfortunate that it is not useful in this case (although the results will be very
strong for a function which is best approximated by zero near the origin).

Nevertheless the theory suggested an avenue to investigate, and though
the results were incorrect the preferred results were found i.e. exponential
convergence with respect to degrees of freedom and an ideal ratio of n to p.

Another odd artifact of the results is that some wavenumbers have sig-
nificantly lower errors for given values compared to others, particularly for
k = 6 and k = 4. This is likely to do with a physical complication due to the
relation of the wavelength to the obstacle which makes the solution converge
more slowly, e.g. the polynomials v± may be significantly more oscillatory
than for other wavenumbers.

34



3.5 Recommendations for further work

In the work here there were a number of points where certain algebraic prob-
lems were posed but remained unsolved, and if these were solved in future
then the methods involved here could be optimised:

1. In section 2.1 there were the two sums (up to taking out a factor of ρ)

∞∑
n=p+1

ρ−2n

(
1− 1

4n2 − 1

)
∞∑

n=p+1

ρ−2n 1

4n2 − 1

the first of which approximated the bracketed term by 1, the second
approximating all denominators by the first denominator. If these
sums could be more accurately bounded above then the bound on
each mesh cell would be tightened. This essentially decreases the
range of values of Kρ,p.

2. In section 2.2 there was equation (2.1) which described the bound for
a general mesh for u(z) bounded and analytic for Re(z) > 0. For any
mesh, there are a set of ellipses resulting from the mesh points which
produce the given bound, meaning that u only needs to be bounded
in the union of these ellipses. The simplest bound for all possible
unions of ellipses is the domain

{z ∈ C| |z − 1| < 1}

i.e. we only require u to be analytic in the above set. This set is also
the limiting ellipse around the last mesh cell as σ → 1.

The result could be improved if one could differentiate (2.1) with
respect to xi, i = 1, . . . , n− 1) and solve the resulting non-linear
system to get the optimal mesh spacings for approximating u on a
mesh of size n with piecewise polynomials of degree ≤ p.

The theory suggests that the mesh must get more refined close to the
origin, so a geometric mesh is a good choice (aside from making the
algebra considerably easier). There is also the possibility of a
polynomial mesh, where the points satisfy
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xi =

(
i

n

)q

, q > 0

and a graded (i.e. non-uniform) mesh. Indeed in [1] a composite mesh
was used for a Galerkin approximation by piecewise polynomials, and
it was shown that for a given level of accuracy the number of mesh
points need only grow logarithmically with respect to k.

But as was mentioned in the conclusion, the fact that this setup
approximates by zero on the first cell means that minimising the
result over the xi is not the best bound in general, and certainly not
for the polygon scattering problem. The program convpolyhp.m
approximates the first mesh cell by a polynomial degree p, thus the
points xi will only be optimal for approximating a function u which is
best approximated by zero close to the origin.

Improving the first expression in the error bound will also enable a
better error analysis with respect to the parameters, meaning the
peculiar result of the ideal ratio of n and p being about 0.7 could be
shown algebraically to be near-optimal.

3. In section 2.3 there are numerous mentions of a cubic equation which
needs to be solved for the cases α ∈ (0, 1

2
) and α = 1

2
. Taking limits of

the parameters of the equation (p, α, σ) to limit the range of values of
ρ and θ would significantly improve the error approximation.

Similarly, using the roots for the different values of α and altering the
two summations accordingly would enable a better expression for the
overall bound.

4. A particular result from plotting graphs in Excel, approximating the
gradient and observing where the derivative crosses the x-axis showed
that the value of σ at which

log ρ log σ

is minimised is not heavily dependent on the unknown parameter θ.
It appears as θ → 0, the minimum value is at σ = σopt = (

√
(2)− 1)2

as in section 2.2. Meanwhile as θ → 1, in the limit the minimum value
is somewhere near to σ = 0.2032. It is important to note that this
root only exists in the limit, and not at when θ = 1 because that
results in the singular case ρ = 1. Algebraic work has failed to
discover this limiting root, but it suggests that for the approximation
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of v± we should take σ ∈ (σopt, 0.2032) rather than σ = 0.15 as in the
convpolyhp.m program and as recommended in [4].
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