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Abstract

In this dissertation we derive and solve numerically a partial differential equation
(PDE) for the value of a weather derivative. We use historical data to suggest a
stochastic process that describes the evolution of temperature and cumulative heat-
ing degree days, and then use this process to derive a convection-diffusion PDE for
the value of a heating degree day option contract. This historical data is also used,
together with expectation theory, to derive a valuation result which we employ as a
boundary condition for our PDE. We investigate and implement various finite differ-
ence schemes, including the semi-Lagrangian method, for solving the PDE numerically.
Our numerical results are then compared with those produced by the more traditional
valuation techniques of Monte Carlo simulation and Burn Analysis.
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Chapter 1

Introduction

1.1 Background

A derivative is a financial instrument whose value depends on the value of other, more
basic underlying variables. For a weather derivative, the underlying variables are mea-
sures of the weather, for example precipitation or snowfall levels, wind speed or, most
commonly, temperature.

Weather derivatives are used to control the risks of naturally-arising exposures to
weather. Businesses subject to weather risk, and therefore likely to benefit from
weather derivatives, include energy producers and consumers, supermarket chains,
the leisure industry and agricultural industries.

The first transaction in the weather derivatives market took place in the US in 1997.
Many companies then decided to hedge their seasonal weather risk after experiencing
a serious loss of earnings during the very severe El Niño winter of 1997-98. Since then
the market for weather derivatives has expanded rapidly, largely driven by companies
in the energy sector. Although the market is still in its early stages, and is currently
not very active, the number of players and volume of trades continues to increase.

The most common type of weather derivative is a ‘Heating Degree Day’ (HDD) or
‘Cooling Degree Day’ (CDD) option. This contract provides the holder with a payoff
at the end of the contract period (at ‘expiry’) dependent on the excess of the period’s
cumulative Degree Days (HDD or CDD) over the ‘strike’ (for a ‘call’ option), or the
excess of the strike over the cumulative Degree Days (for a ‘put’ option). We define
these Degree Days and set out the precise form of the payoff for each type of contract
in the next section.

1.2 Definitions

The Heating Degree Days (HDD) on day i are defined by

HDDi = max(18−Xi, 0),

where Xi = Xmax
i +Xmin

i

2 is the average temperature measured on day i in degrees Cel-
cius, with Xmax

i and Xmin
i being the maximum and minimum measured temperatures
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respectively on day i.

Similarly, we define the Cooling Degree Days (CDD) on day i by

CDDi = max(Xi − 18, 0).

Suppose we have a contract period, 0 ≤ t ≤ T , consisting of N days. Then the
cumulative number of HDD and CDD for that period are

HN =
N∑

i=1

HDDi and

CN =
N∑

i=1

CDDi respectively.

If we denote the strike level by K and the ‘tick size’ (the monetary value paid out per
degree Celcius) by tick, then the payoff for an uncapped HDD call or put option is

Pcall = max(HN −K, 0)× tick or
Pput = max(K −HN , 0)× tick respectively,

and similarly for an uncapped CDD call or put option.

We will work with a purchased HDD put option as an example. We will now use S to
represent cumulative HDD, to be consistent with stock options, where the underlying
share price is usually represented by S. In addition, we will introduce a ‘payment cap’,
cap, which is included to avoid excessive payoffs on these contracts due to unusually
extreme weather conditions. Our payoff is therefore

P (S) = min{max(K − S, 0)× tick, cap}. (1.1)

This is graphed in Figure 1.1.

Figure 1.1: Payoff diagram for a purchased HDD put option
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1.3 An Example Contract

We illustrate the previous definitions by setting out the indicative terms and condi-
tions of a real-life HDD put option contract. The contract below was prepared by
ABN Amro, but not actually traded. We shall attempt to value this example contract
using various methods in later chapters.

Contract Period: 1 November 2002 up to and including 31 March 2003.

Payment Cap: EUR 1,000,000.

Weather Unit: On each day during the Contract Period, HDD rounded
to the nearest 0.1 degrees Celcius calculated as follows:
The Base Temperature for calculation of HDD is 18
degrees Celcius. If the Daily Average Temperature is
below 18 degrees Celcius, HDD is equal to the Base
Temperature minus the Daily Average Temperature. If
the Daily Average Temperature is 18 degrees Celcius or
above, HDD shall be zero.

Weather Index: The sum of all Weather Units in the Contract Period,
rounded to the nearest 0.1 degrees Celcius.

Strike Level: 1,750 Weather Units.

Weather Station: Vlissingen (The Netherlands), WMO#:06310.

Daily Average Temperature: The average, rounded to the nearest 0.1 degrees Celcius,
of the maximum daily temperature and the minimum
daily temperature, as determined by the Dutch Met
Office (KNMI) at the Weather Station.

Tick Size: EUR 5,000 per Weather Unit.

Party A Payments: If the Weather Index in the Contract Period is greater
than or equal to the Strike Level, the Party A Payment
is zero. Otherwise, the Party A Payment is equal to the
Tick Size multiplied by (Strike Level - Weather Index),
up to a maximum of the Payment Cap.

This can be summarised by the data

T = 151 (days),
K = 1750 ( ◦C),

cap = 1000000 (Euros),
tick = 5000 (Euros per ◦C),
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with the payoff satisfying (1.1).

1.4 Possible Valuation Methods

In order to determine a reasonable price which should be paid to acquire the weather
derivative, we need to be able to value the contract at time t = 0 (the contract start
date).

The traditional method for valuing options is via the Black-Scholes model. Unfor-
tunately, this model is based on certain assumptions that do not apply realistically to
weather derivatives, the most fundamental of these being the assumption of a tradeable
underlying commodity. The underlying variables for weather derivatives, for example
temperature, are not themselves tradeable in a market, and so the theory applied in
the derivation of the Black-Scholes formula (see Black and Scholes [3]) is not valid.

Degree Day weather options tend therefore to be valued by developing models for
either temperature or cumulative Degree Days, and then running simulations based
on Monte Carlo methods or on historical data (Burn Analysis).

In this dissertation, we will develop new valuation methods based on the numerical
solution of partial differential equations (PDE’s) and use these to value the example
contract in the previous section. We start in Chapter 2 by analysing the relevant
historical temperature data, and from this, make some conclusions on the distribution
of the HDD and temperature data. In Chapter 3, we use these conclusions together
with expectation theory to derive a formula for our contract value. In Chapter 4, we
again use the results from Chapter 2, this time to derive a partial differential equation
(PDE) satisfied by the option value. Chapters 5, 6, 7 and 8 are concerned with the
numerical solution of this PDE. In Chaper 9, we demonstrate the results of Monte
Carlo simulations and Burn Analysis, to enable a final comparison with our previous
methods.

4



Chapter 2

Analysis of Historical
Temperature Data for the
Example Contract

2.1 Introduction

Although an active or ‘liquid’ market does not yet exist for weather derivatives, we do
have access to extensive historical weather data. This means that weather derivative
models tend to be calibrated to past data. To be able to value our example contract
described in section 1.3, we therefore need to analyse the relevant historical tempera-
ture data.

We have accessed the last fifty years’ daily maximum and minimum temperatures
for Vlissingen, The Netherlands, (the weather station of the example contract in
section 1.3) from the Royal Netherlands Meteorological Institute website1. From this
data we have calculated the daily average temperatures and Heating Degree Days
(HDD) for each day in our contract period (1 November to 31 March inclusive), for
each of the last fifty years.

We have then developed and tested various hypotheses about the distribution of the
average temperature and HDD data, the results of which we will use in later chapters
when we develop models for valuing our weather derivatives contract.

2.2 Hypotheses and Results

Hypothesis 1: The cumulative HDD for the contract period are normally distributed.

This hypothesis is claimed to be valid in McIntyre [11]. In our case, we have cal-
culated the cumulative HDD for the contract period for the last fifty years, prorating
the values by one day for leap years. We have then tested our hypothesis by performing
a χ2 test at the 5% level. The result of this test is that the observed distribution of

1www.knmi.nl
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cumulative HDD is consistent with the normal distribution. We can see the closeness
of fit of the observed distribution to the normal distribution from Figure 2.1.

Figure 2.1: Cumulative HDD distribution for Vlissingen

We have calculated the mean (m) and standard deviation (s) of this cumulative HDD
distribution for use in later chapters. We obtain

m = 1966.4 ( ◦C) and
s = 188.5 ( ◦C).

Hypothesis 2: The daily increments in average temperature are normally distributed.

We have tested this hypothesis by performing Jarque-Bera tests (at the 5% level)
for goodness of fit to a normal distribution, using Matlab. (This is computationally
more efficient than χ2 tests since we are performing the test for each of 151 daily
increments). The results of these tests are that our hypothesis can not be rejected
for 88% of the days in the contract period. Since such a high proportion of the daily
increments have distributions consistent with the normal distribution, we will make
the approximation that all daily increments in average temperature are normally dis-
tributed, that is, we assume that our hypothesis is true.

To use this hypothesis in valuing our example contract, we will need to know the mean
and standard deviation of the average temperature increments for each day in the con-
tract period. We deduce from the apparent random behaviour of the arithmetic mean
(over the last fifty years) daily temperature increments in Figure 2.2 that a single day
is too short a period for one to observe the seasonal trend in average temperature.
Therefore, as is industry practice, we calculate the mean and standard deviation of
each day’s increment using a 30 day rolling average, exponentially weighted to give
older temperature increments less weight than more recent increments. This is known
as the ‘Exponentially Weighted Moving Average’ or EWMA (see Clewlow and Strick-
land [5]).
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We calculate the standard deviation of the (N + 1)th daily increment by

sN+1 =

√√√√ 1∑N
i=1 λN−i

N∑
i=1

λN−i(xi −m)2

'

√√√√(1− λ)
N∑

i=1

λN−i(xi −m)2,

using

N∑
i=1

λN−i =
N∑

i=1

λi−1

=
1− λN

1− λ

' 1
1− λ

,

where xi, i = 1, 2, 3, . . . , N is the arithmetic mean (based on 50 years of historical
data) temperature increment of day i, m is the arithmetic mean of x1, x2, . . . , xN and
λ (0 < λ < 1) is the decay factor which determines the relative weight given to older
increments.

Similarly, we calculate the mean of the (N + 1)th daily increment by

mN+1 =
1∑N

i=1 λN−i

N∑
i=1

λN−ixi

' (1− λ)
N∑

i=1

λN−ixi.

We have taken the decay factor, λ, to be equal to 0.78. (Clewlow and Strickland [5]
illustrates typical optimal decay factors for the prices of energy commodities, and these
lie in the range 0.78 ≤ λ ≤ 0.98. We would expect temperature increments to show
the maximum possible seasonality, and so we require the minimum possible relative
weight to be given to older days’ increments, and hence the minimum possible decay
factor.)

We see from Figure 2.2 that the EWMA mean does reflect seasonality, in that it
is generally negative in the first half of the contract period (when the average temper-
ature is decreasing) and generally positive in the second half of the contract period
(when the average temperature is increasing).

7



Figure 2.2: Mean daily increments in average temperature for Vlissingen

Hypothesis 3: The daily increments in cumulative HDD are normally distributed.

As for Hypothesis 2, we have performed Jarque-Bera tests (at the 5% level) for good-
ness of fit to a normal distribution, using Matlab. In this case, we find that our
hypothesis can not be rejected for 78% of the days in the contract period. Although
this percentage is not as high as for the temperature increment test, we still consider
this to be sufficiently high a proportion that we can assume all daily increments in
cumulative HDD to be normally distributed, and hence we assume that our hypothesis
is true. The main reason that the daily increments in cumulative HDD do not fit a
normal distribution as well as those in temperature is that the former show a long-term
trend. The daily increments in cumulative HDD are just the daily HDD, which are
defined by

HDDi = max(18−Xi, 0),

where Xi is the average temperature of day i. For the winter contract period, we
generally have Xi ≤ 18 and so

HDDi = 18−Xi.

Therefore these increments show a long-term trend equal and opposite to that of the
average temperature. This is illustrated for an example daily increment in Figure 2.3.
We will discuss reasons for the long-term trend in average temperature in the next
section.

For the calculation of the mean and standard deviation of the daily cumulative HDD
increments, we note that, unlike for the daily temperature increments, the arithmetic
mean (over the last fifty years) daily cumulative HDD increments do demonstrate a
seasonal trend, since these increments are the daily HDD themselves. (See Figure 2.4).
We see that the arithmetic mean of the daily HDD increases to the middle of the con-
tract period (middle of winter), when the temperature is coldest, and then decreases
as the temperature increases. This is consistent with the seasonality shown by the
EWMA mean daily temperature increments in Figure 2.2. This implies that a single
day is not too short a period for one to observe a trend in cumulative HDD, and so we
can calculate our mean and standard deviation of the daily increments in the standard
way.
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Figure 2.3: Scattergram of cumulative HDD increments for Vlissingen: 30-31 March

Figure 2.4: Arithmetic mean daily increments in cumulative HDD for Vlissingen

2.3 Problems with the Analysis of Historical Tem-
perature Data

We note here some general issues with the collection and analysis of historical temper-
ature data (see Nelken [14]), and their application to our historical data analysis:

1. Even when the data is available, there may be missing data or errors. The
historical data may therefore have to be ‘cleansed’. Our data source contained
no gaps and no obvious anomalies, and so has not been adjusted in this respect.

2. In a leap year, the winter contract period contains an extra day. We have adjusted
for this in our analysis of cumulative HDD above.

3. The weather station may have been moved due to construction, or may have
been subject to other external factors (for example it may have originally been

9



in the sun and now be in the shade, or vice versa). This was not apparent from
our data source.

4. It is not clear how many years of historical data should be considered. Dischel
[6] states that fifty years is preferred (as per our analysis in the previous section),
but in other cases only ten or twenty years of data are used.

5. Many cities exhibit the ‘urban island effect’, where, due to heavy industrial ac-
tivity, the weather gradually becomes warmer in that area. The global warming
effect is also apparent all over the world. We have graphed the average tem-
perature for the contract period for the last fifty years (see Figure 2.5), and
observed that an increase of almost 2 ◦C (from 4.1 ◦C to 5.9 ◦C) appears to have
occurred. It may therefore be reasonable to linearly shift the earlier temperature
data upwards by 1− 2 ◦C. Since this linear shift is very subjective, we have not
attempted to alter our data in such a way, but note that this is a factor that
may lead to inaccuracies in our contract valuation.

Figure 2.5: Average temperature trend for Vlissingen

6. There are extreme weather patterns that occur in some years, most notably the
El Niño and La Niña, which, although directly affecting the water temperatures
in the eastern and central equatorial Pacific Ocean, also have important con-
sequences for weather and climate around the globe. Since these occur fairly
frequently (El Niño approximately every two to seven years) and their impact
on Europe is very difficult to quantify, we have not adjusted our historical data
for these events.

10



Chapter 3

An Expectation-Based
Formula

3.1 Introduction

In this chapter, we derive a similar result to that quoted in McIntyre [11], for the value
of an HDD put option. The derivation makes the assumption, consistent with the re-
sults of the temperature analysis in the previous chapter, that the cumulative Heating
Degree Days (HDD) over the life of a contract are normally distributed. The value of
the option is then calculated as being the expected payoff of the option, appropriately
discounted to account for the time value of money.

After proving this result, we apply the formula to the example contract in section
1.3, to obtain a value for this option at the contract start date.

3.2 Derivation of the Formula

We consider a general HDD put option, and use the notation set out on page vi. In
addition, we define

ST = the cumulative number of HDD at time t = T (the end of the contract),

P (ST ) = the option payoff at time t = T , neglecting the tick size and payment cap,
that is,

P (ST ) = max(K − ST , 0), (3.1)

and

V = the option value at time t = 0 (the contract start date), neglecting the tick
size and payment cap.

(We will use P ?(ST ) and V ? to represent the option payoff and value when the tick
size and payment cap are taken into consideration.)

11



We assume that ST is a normally distributed random variable with mean m and
standard deviation s, which means that ST has probability density function

f(x) =
1

s
√

2π
e−

(x−m)2

2s2 . (3.2)

Then, neglecting the tick size and payment cap until later, since the value of the option
is the discounted expected payoff, we have

V = e−rT E[P (ST )]

= e−rT

∫ +∞

−∞
P (x)f(x)dx

=
e−rT

s
√

2π

∫ +∞

−∞
max(K − x, 0)e−

(x−m)2

2s2 dx

(substituting from (3.1) and (3.2)), where r is the continuously-compounded annu-
alised risk-free interest rate.

Since

max(K − x, 0) =
{

K − x if x ≤ K
0 if x > K

,

we can write the previous expression for V as

V =
e−rT

s
√

2π

∫ K

−∞
(K − x)e−

(x−m)2

2s2 dx. (3.3)

If we define

z =
x−m

s
,

then we have

x = sz + m, and
dx = sdz,

and, making a change of variable from x to z in (3.3) gives

V =
e−rT

s
√

2π

∫ K−m
s

−∞
(K − sz −m)e−

z2
2 sdz

=
e−rT

√
2π

∫ K−m
s

−∞
(K −m)e−

z2
2 dz − e−rT

√
2π

∫ K−m
s

−∞
sze−

z2
2 dz

= e−rT (K −m)
∫ K−m

s

−∞

1√
2π

e−
z2
2 dz +

se−rT

√
2π

[
e−

z2
2

]K−m
s

−∞

= e−rT (K −m)
∫ K−m

s

−∞

1√
2π

e−
z2
2 dz +

se−rT

√
2π

e−
(K−m)2

2s2

= e−rT

{
(K −m)N

(
K −m

s

)
+ s2f(K)

}
, (3.4)
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where N(x) = 1√
2π

∫ x

−∞ e−
z2
2 dz is the cumulative standard normal distribution func-

tion, and f(x) is the normal probability density function defined in (3.2).

We now recall that the actual payoff of the option, including the tick size and payment
cap is

P ?(ST ) = min {max(K − ST , 0)× tick, cap} ,

and so the actual value is

V ? = e−rT E [P ?(ST )]
= e−rT E [min {max(K − ST , 0)× tick, cap}]
= min

{
e−rT E [max(K − ST , 0)]× tick, e−rT cap

}
= min{V × tick, e−rT cap}.

We can therefore incorporate the tick size and payment cap in (3.4) to give a final
value for the HDD put option at time t = 0:

V ? = e−rT min
{(

(K −m)N
(

K −m

s

)
+ s2f(K)

)
× tick, cap

}
. (3.5)

3.3 Valuation of the Example Contract in Section 1.3

For our example contract in section 1.3, we have

T = 151 (days),
K = 1750 (◦C),

cap = 1000000 (Euros), and
tick = 5000 (Euros per ◦C).

Also, from our historical temperature data analysis in Chapter 2, we have

m = 1966.4 (◦C), and
s = 188.5 (◦C).

We will assume an annual risk-free interest rate of 5%.

These values mean that K−m
s = -1.1480 (to 4 d.p.), and hence that

N
(

K−m
s

)
= 0.1255 (to 4 d.p.).

Also, we can calculate f(K) = f(1750) = 0.0011 (to 4 d.p.).

13



Therefore, using formula (3.5), we obtain

V ? = e−0.05× 151
365 min

{
(((1750− 1966.4)× 0.1255) + (188.52 × 0.0011))× 5000, 1000000

}
= 58415.

This shows that our expectation-based formula values the example contract in section 1.3
at 58,415 Euros at the start of the contract.
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Chapter 4

A PDE for the Value of an
HDD Put Option

4.1 Introduction

In this chapter, we will use Zt to represent either the cumulative Heating Degree Days
(HDD) or the temperature at time t, and derive a general PDE for the value of an
HDD put option.

We will assume that Zt satisfies the Stochastic Differential Equation (SDE)

dZt = µtdt + σtdWt, Z0 = Ẑ, (4.1)

where µt is the expected drift rate at time t, σt is the volatility at time t of the cumu-
lative HDD / temperature (as appropriate), and dW is a standard Wiener process.

We can make this assumption, since (4.1) is equivalent to the expression

Zt+∆t − Zt = µt∆t + σt(Wt+∆t −Wt), Z0 = Ẑ,

as ∆t → 0, which implies, by the definition of the standard Wiener process that

Zt+∆t − Zt ∼ N(µt∆t, σt

√
∆t) (4.2)

(since Wt+∆t−Wt ∼ ε
√

∆t as ∆t → 0, where ε ∼ N(0, 1)). This is consistent with our
data analysis in Chapter 2, which showed that it is reasonable to assume that the daily
increments in both cumulative HDD and average temperature are normally distributed.

We will also assume that the value of our HDD put option at time t = 0 (the contract
start date) is given by V (Ẑ, T ), where T is the expiry time of the contract. We use
the notation set out on page vi for the risk-free rate (r) and the strike, tick size and
payment cap of the option (K, tick and cap respectively).

4.2 Derivation of the PDE

Brody et al [4] derived a PDE for the value of an HDD swap, where the tempera-
ture was assumed to follow a fractional Orstein-Uhlenbeck (mean-reverting) process.
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Here we follow the same approach, but for an HDD put option, with the underlying
cumulative HDD / temperature assumed to evolve according to the SDE (4.1). This
derivation is more general than that given in Brody et al [4], in particular with regard
to the inclusion of a generalised payoff function.

Theorem 1 Suppose that ω : R × [0, T ] → R is a twice continuously differentiable
function with bounded derivatives, satisfying the parabolic PDE

−ωτ (z, τ)− rω(z, τ) + µT−τωz(z, τ) +
1
2
σ2

T−τωzz(z, τ) = 0, (4.3)

with the initial condition
ω(z, 0) = P (z), (4.4)

where P (z) is the payoff of the option. Then

V (Ẑ, T ) = ω(Ẑ, T ). (4.5)

Proof First we integrate SDE (4.1) from 0 to t to give

Zt = Ẑ +
∫ t

0

µsds +
∫ t

0

σsdWs. (4.6)

We now define the process

ηt =
∫ t

0

σsdWs (4.7)

and the function

f(η, t) = Ẑ +
∫ t

0

µsds + η. (4.8)

Then (4.6),(4.7)and (4.8) imply that

Zt = f(ηt, t). (4.9)

Let us consider the function g of two variables, defined by

g(η, t) = e−rtω(f(η, t), T − t), (4.10)

where f(η, t) is given by (4.8) and ω(z, τ) is the function introduced in Theorem 1.

We first note that partial differentiation of (4.10) gives the following results:

gη(η, t) = e−rtωz(f(η, t), T − t), (4.11)
gηη(η, t) = e−rtωzz(f(η, t), T − t), and (4.12)
gt(η, t) = e−rt[−rω(f(η, t), T − t) + ωz(f(η, t), T − t)µt

−ωτ (f(η, t), T − t)]. (4.13)

Now, by applying Itô’s Lemma in integral form (see equation (A.4) of Appendix A) to
g(ηt, t) when ηt follows the process (4.7), we obtain

g(ηt, t) = g(0, 0) +
∫ t

0

{
gs(ηs, s) +

1
2
gηη(ηs, s)σ2

s

}
ds +

∫ t

0

gη(ηs, s)σsdWs.
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At time t = T this becomes

g(ηT , T ) = g(0, 0) +
∫ T

0

{
gt(ηt, t) +

1
2
gηη(ηt, t)σ2

t

}
dt +

∫ T

0

gη(ηt, t)σtdWt.

Substituting for g, gη, gηη and gt from (4.10),(4.11),(4.12) and (4.13) gives

e−rT ω(f(ηT , T ), 0) = ω(f(0, 0), T ) +
∫ T

0

e−rt
{
− rω(f(ηt, t), T − t)

+ωz(f(ηt, t), T − t)µt − ωτ (f(ηt, t), T − t)
}

dt

+
1
2

∫ T

0

e−rtωzz(f(ηt, t), T − t)σ2
t dt

+
∫ T

0

e−rtωz(f(ηt, t), T − t)σtdWt.

From the definition of f in (4.8) and the fact that Zt = f(ηt, t) from (4.9), we have

e−rT ω(ZT , 0) = ω(Ẑ, T ) +
∫ T

0

e−rt
{
− rω(Zt, T − t) + ωz(Zt, T − t)µt

−ωτ (Zt, T − t) +
1
2
ωzz(Zt, T − t)σ2

t

}
dt

+
∫ T

0

e−rtωz(Zt, T − t)σtdWt. (4.14)

Taking expectations of both sides of (4.14), and using the fact that

E

[∫ T

0

φ(t)dWt

]
= 0

for a Wiener process dWt and any bounded, suitably measurable function φ(t) (see
Jäckel [10]), we deduce that

e−rT E [ω(ZT , 0)] = ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t) + ωz(Zt, T − t)µt

−ωτ (Zt, T − t) +
1
2
ωzz(Zt, T − t)σ2

t

}
dt

]
. (4.15)

Now, we know that the value of our HDD put option at time t = 0 must be equal to
the expected value of the payoff from the option, discounted back in time, that is,

V (Ẑ, T ) = E
[
e−rT P (ZT )

]
. (4.16)

We now add (4.16) ‘side by side’ to (4.15), to give
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V (Ẑ, T ) + e−rT E [ω(ZT , 0)] = ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t)

+ωz(Zt, T − t)µt − ωτ (Zt, T − t) +
1
2
ωzz(Zt, T − t)σ2

t

}
dt

]
+E

[
e−rT P (ZT )

]
.

Rearranging, we get

V (Ẑ, T ) + e−rT E [ω(ZT , 0)− P (ZT )]

= ω(Ẑ, T ) + E

[ ∫ T

0

e−rt
{
− rω(Zt, T − t)

+ωz(Zt, T − t)µt − ωτ (Zt, T − t) +
1
2
ωzz(Zt, T − t)σ2

t

}
dt

]
. (4.17)

Putting t = T − τ and Zt = z, (4.17) becomes

V (Ẑ, T ) + e−rT E [ω(z, 0)− P (z)] = ω(Ẑ, T )

+E

[ ∫ T

0

e−r(T−τ)
{
− rω(z, τ) + ωz(z, τ)µT−τ − ωτ (z, τ) +

1
2
ωzz(z, τ)σ2

T−τ

}
dτ

]
.

Therefore by defining ω(z, τ) to satisfy PDE (4.3) and initial condition (4.4), we obtain
the result (4.5), as required. 2

4.3 Boundary Conditions

In order to solve the PDE (4.3) numerically, we require in addition to initial condition
(4.4), two boundary conditions on z 1 (as the PDE is first order in τ and second order
in z). Since we substituted z for Zt, z represents cumulative HDD / temperature (as
appropriate) over the life of the contract.

We will investigate these boundary conditions further in subsequent chapters, but
for now we will assume that the boundary conditions take the form

ω(z1, τ) = B1, (4.18)

and
ω(z2, τ) = B2. (4.19)

Equation (4.5) of Theorem 1 equates ω to the option value when τ = T (t = 0), and
the initial condition (4.4) equates ω to the option payoff (i.e. option value) at time
τ = 0 (t = T ). Therefore, although it is not explicitly stated in Theorem 1, it appears
reasonable that ω(z, τ) may be assumed to represent the value of the option at time
t = T − τ , when the cumulative HDD / temperature equals z. We will therefore
assume that the boundary values B1 and B2 represent the value of the option when
the cumulative HDD / temperature equals z1 and z2 respectively.

1Note that Brody et al [4] did not attempt to solve their PDE numerically and therefore did not
consider boundary conditions.
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4.4 Transformation of the PDE and Initial/Boundary
Conditions

We set out to transform our PDE into one which is more easy to solve numerically.

From equation (4.3), we have

ωτ =
1
2
σ2

T−τωzz − rω + µT−τωz,

and from (4.4), (4.18) and (4.19) we have the initial and boundary conditions:

ω(z, 0) = P (z),
ω(z1, τ) = B1, and
ω(z2, τ) = B2.

If we make the transformation
ω = eατu(z, τ),

the PDE becomes
αu + uτ =

1
2
σ2

T−τuzz − ru + µT−τuz.

By choosing α = −r, we obtain

uτ =
1
2
σ2

T−τuzz + µT−τuz, (4.20)

with transformed initial and boundary conditions

u(z, 0) = P (z), (4.21)
u(z1, τ) = erτB1, and (4.22)
u(z2, τ) = erτB2. (4.23)

Our option value at time t = 0, V (Ẑ, T ), is then given by

V (Ẑ, T ) = ω(Ẑ, T ) = e−rT u(Ẑ, T ). (4.24)

Equation (4.20) is a linear parabolic PDE with time-dependent coefficients, which may
also be referred to as a convection-diffusion PDE (see Morton [12]). In the next chapter,
we will assess the accuracy and stability of various finite difference schemes which may
be used to solve this PDE numerically. In later chapters, we will apply these numerical
methods to value our example contract described in section 1.3, when z represents
cumulative HDD (Chapters 6 and 7) and temperature (Chapter 8) respectively.
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Chapter 5

Accuracy and Stability of
Numerical Schemes

5.1 Possible Numerical Schemes

Here we set out various finite difference schemes which may be proposed to provide a
numerical solution to our PDE (4.20):

uτ =
1
2
σ2

T−τuzz + µT−τuz.

We make the approximation
un

j ' u(zj , τn),

where zj = j∆z, τn = n∆τ .

Possible schemes then include the following:

1. Explicit Central-Difference:

un+1
j − un

j

∆τ
=

1
2
σ2

T−τn

1
(∆z)2

(
un

j+1 − 2un
j + un

j−1

)
+µT−τn

1
2∆z

(
un

j+1 − un
j−1

)
. (5.1)

2. Implicit Central-Difference:

un+1
j − un

j

∆τ
=

1
2
σ2

T−τn+1

1
(∆z)2

(
un+1

j+1 − 2un+1
j + un+1

j−1

)
+µT−τn+1

1
2∆z

(
un+1

j+1 − un+1
j−1

)
. (5.2)
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3. Crank-Nicolson:

un+1
j − un

j

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
+

1
2

{
µT−τn

1
2∆z

(un
j+1 − un

j−1)

+ µT−τn+1

1
2∆z

(un+1
j+1 − un+1

j−1 )
}

. (5.3)

4. Crank-Nicolson with Downwind/Upwind Convection:

un+1
j − un

j

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}

+


µT−τn

1
∆z

(
un

j+1 − un
j

)
if µT−τn

> 0

µT−τn

1
∆z

(
un

j − un
j−1

)
if µT−τn

< 0.
(5.4)

5.2 Accuracy and Stability Results

For each of the above schemes, we have determined the scheme’s accuracy by calcu-
lating the truncation error, and investigated the scheme’s stability by ‘freezing’ the
coefficients in time and then performing Fourier stability analysis. (See the following
section for an example of these calculations.) The results are as follows:

Scheme Accuracy Fourier Stability

Explicit Central-Difference O(∆τ) + O((∆z)2) Stable if
maxτn(σ2

T−τn
)∆τ ≤ (∆z)2

and maxτn
|µT−τn

|∆τ ≤ ∆z

Implicit Central-Difference O(∆τ) + O((∆z)2) Unconditionally Stable

Crank-Nicolson O((∆τ)2) + O((∆z)2) Unconditionally Stable

Crank-Nicolson with O(∆τ) + O(∆z) Stable if
Downwind/Upwind Convection maxτn

|µT−τn
|∆τ ≤ ∆z
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We can see from these results that the Crank-Nicolson scheme (5.3) has the greatest
level of accuracy whilst also being unconditionally Fourier stable. This is therefore
the preferred scheme out of those listed in the previous table. In the next section, we
detail the accuracy and stability calculations for this chosen scheme, and in Chapter 6,
we demonstrate how this scheme is implemented to approximately solve our PDE.

5.3 Accuracy and Stability Calculations for the Crank-
Nicolson Scheme

5.3.1 Accuracy

We define the discrete linear operator, Lh, by

Lhun
j ≡

un+1
j − un

j

∆τ
− 1

2

{
1
2
σ2

T−τn

1
(∆z)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆z)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
−1

2

{
µT−τn

1
2∆z

(un
j+1 − un

j−1)

+ µT−τn+1

1
2∆z

(un+1
j+1 − un+1

j−1 )
}

. (5.5)

Then the truncation error, εn
j , is defined to be

εn
j = Lhu(zj , τn)− Lhun

j

= Lhu(zj , τn), (5.6)

since Lhun
j = 0 by definition.

Combining (5.5) and (5.6), we obtain

εn
j =

1
∆τ

(u(j∆z, (n + 1)∆τ)− u(j∆z, n∆τ))

− 1
4(∆z)2

σ2
T−τn

(u((j + 1)∆z, n∆τ)− 2u(j∆z, n∆τ) + u((j − 1)∆z, n∆τ))

− 1
4(∆z)2

σ2
T−τn−∆τ (u((j + 1)∆z, (n + 1)∆τ)

−2u(j∆z, (n + 1)∆τ) + u((j − 1)∆z, (n + 1)∆τ))

− 1
4∆z

µT−τn
(u((j + 1)∆z, n∆τ)− u((j − 1)∆z, n∆τ))

− 1
4∆z

µT−τn−∆τ (u((j + 1)∆z, (n + 1)∆τ)− u((j − 1)∆z, (n + 1)∆τ)) . (5.7)
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We expand (5.7) about (j∆z, n∆τ) using Taylor series, and collect coefficients of pow-
ers of ∆z and ∆τ to give

εn
j = (uτ −

1
2
σ2

T−τuzz − µT−τuz) +
∆τ

2

(
uττ −

1
2
σ2

T−τuzzτ +
1
2
σ2′

T−τuzz − µT−τuzτ

+µ′T−τuz

)
+ (∆τ)2

(
1
6
uτττ −

1
8
σ2

T−τuzzττ +
1
4
σ2′

T−τuzzτ −
1
8
σ2′′

T−τuzz

−1
4
µT−τuzττ +

1
2
µ′T−τuzτ −

1
4
µ′′T−τuz

)
+(∆z)2

(
− 1

24
σ2

T−τuzzzz −
1
6
µT−τuzzz

)
+ · · · (5.8)

(using u and τ to represent u(j∆z, n∆τ) and τn respectively, and σ2′ , σ2′′ , µ′ and µ′′

to represent the first and second derivatives of σ2 and µ with respect to τ).

We note that the first bracket of expression (5.8) is zero from the definition of the
PDE itself, and the second bracket is equal to the derivative of the first bracket with
respect to τ , and therefore also zero.

We therefore have

εn
j = (∆τ)2

(
1
6
uτττ −

1
8
σ2

T−τuzzττ +
1
4
σ2′

T−τuzzτ −
1
8
σ2′′

T−τuzz

−1
4
µT−τuzττ +

1
2
µ′T−τuzτ −

1
4
µ′′T−τuz

)
+(∆z)2

(
− 1

24
σ2

T−τuzzzz −
1
6
µT−τuzzz

)
+ · · · , (5.9)

that is, εn
j = O((∆τ)2) + O((∆z)2), which implies that scheme (5.3) is second order

accurate in both τ and z.

5.3.2 Stability

Since stability is a local phenomenon, we investigate the scheme with the time-dependent
coefficients fixed at τ = τ0, say. Because the coefficients only vary slowly in time, this
is not an overly restrictive assumption. We set

λ =
1
4
σ2

T−τ0

∆τ

(∆z)2
, and

ν =
1
4
µT−τ0

∆τ

∆z
,

and the scheme becomes

un+1
j − un

j = λ(un
j+1 − 2un

j + un
j−1 + un+1

j+1 − 2un+1
j + un+1

j−1 )

+ν(un
j+1 − un

j−1 + un+1
j+1 − un+1

j−1 ).
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Using the Fourier method, we now let un
j = aneikj∆z, where a is a function of τ only,

and substitute this into the scheme to obtain

an+1 − an = λ
(
an(eik∆z − 2 + e−ik∆z) + an+1(eik∆z − 2 + e−ik∆z)

)
+ν

(
an(eik∆z − e−ik∆z) + an+1(eik∆z − e−ik∆z)

)
= −4λ

(
an sin2

(
k∆z

2

)
+ an+1 sin2

(
k∆z

2

))
+2iν (an sin (k∆z) + an+1 sin (k∆z)) .

We can rearrange this to give

an+1 = G(k)an,

where

G(k) =
1− 4λ sin2

(
k∆z

2

)
+ 2iν sin (k∆z)

1 + 4λ sin2
(

k∆z
2

)
− 2iν sin (k∆z)

is the amplification factor.

For Fourier stability, we require |G(k)| ≤ 1 so that1− 4λ sin2

(
k∆z

2

)
+ 2iν sin (k∆z)

 ≤ 1 + 4λ sin2

(
k∆z

2

)
− 2iν sin (k∆z)

,

that is, we require

1− 8λ sin2

(
k∆z

2

)
+ 16λ2 sin4

(
k∆z

2

)
+ 4ν2 sin2 (k∆z) ≤

1 + 8λ sin2

(
k∆z

2

)
+ 16λ2 sin4

(
k∆z

2

)
+ 4ν2 sin2 (k∆z),

which is clearly satisfied for all λ, ν and k since

16λ sin2

(
k∆z

2

)
≥ 0.

Therefore the Crank-Nicolson scheme (5.3) is unconditionally Fourier stable.
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Chapter 6

Solution of the PDE for
Cumulative HDD

6.1 Introduction

We consider the general PDE set out in equation (4.20) of Chapter 4, and now assume
that the independent variable z represents cumulative HDD. We therefore replace z
by S, to be consistent with our previous notation, and the PDE (4.20) becomes

uτ =
1
2
σ2

T−τuSS + µT−τuS , (6.1)

with initial and boundary conditions

u(S, 0) = P (S), (6.2)
u(S1, τ) = erτB1, and (6.3)
u(S2, τ) = erτB2. (6.4)

(Here P (S) is the option payoff, and B1, B2 will be taken to be the option value at
S = S1, S = S2 respectively.)

By the definition of the option, we have

P (S) = min {max(K − S, 0)× tick, cap}

(see equation (1.1)), which completes our initial condition.

Since HDD are positive (by definition), we know that S ≥ 0 at all points in time.
Also since S is cumulative, if S ≥ K at any time during the contract, we will have
S ≥ K at expiry, and hence a zero payoff. This means that we are only required to
solve for u in the region 0 ≤ S ≤ K.

We therefore have

S1 = 0,

S2 = K, B2 = 0.
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The value of B1 is less obvious. If S = 0 at time t = T − τ , this simply tells us that
the temperature has been greater than or equal to 18 ◦C (no HDD have occurred) up
to time t. The option payoff is greater for smaller values of S at expiry. This implies
that if S = 0 at t = t2, the value of the option would be expected to be greater than if
S = 0 at t = t1, 0 ≤ t1 < t2 ≤ T (since if S = 0 later in the contract period, the value
to which S accumulates by the expiry date would be expected to be lower, and hence
the payoff higher, than if S = 0 earlier in the contract period). The boundary value
B1 is therefore an increasing function of time t, or a decreasing function of τ = T − t.

To determine this function B1(τ), we will return to the expectation approach ex-
amined in Chapter 3, and apply formula (3.5). Recall that we defined ST to be the
cumulative number of HDD at the end of the contract, and that we assumed ST to
be normally distributed with mean m and standard deviation s. Now, if S = 0 at a
time t = T − τ from the start of the contract, ST will accumulate over a time period
of length τ = T − t, rather than a period of length T . We therefore assume that the
mean and standard deviation of ST will be reduced linearly from m and s to τ

T m and
τ
T s respectively in formula (3.5). The discount factor e−rT will become e−rτ , since we
are now only discounting back to the time t = T − τ rather than to the time t = 0.

Hence we obtain the expression

B1(τ) = e−rτ min
{(

(K − τ

T
m)N

(
K − τ

T m
τ
T s

)
+

τ2

T 2
s2f(K)

)
× tick, cap

}
.

Using these expressions and values for P (S), S1, S2, B1 and B2, our initial and bound-
ary conditions in equations (6.2), (6.3) and (6.4) become

u(S, 0) = min {max(K − S, 0)× tick, cap} , (6.5)

u(0, τ) = min
{(

(K − τ

T
m)N

(
K − τ

T m
τ
T s

)
+

τ2

T 2
s2f(K)

)
× tick, cap

}
, (6.6)

u(K, τ) = 0, (6.7)

for 0 ≤ S ≤ K, 0 ≤ τ ≤ T .

From equation (4.24) of Chapter 4, our option value at time t = 0, V (Ŝ, T ), is given
by

V (Ŝ, T ) = e−rT u(Ŝ, T ),

where Ŝ = S0. Since S is cumulative, S0 = 0, and therefore our option value at time
t = 0 is

V (Ŝ, T ) = e−rT u(0, T ).

This means that the result produced by the PDE for the option value at time t = 0 is
determined by the boundary condition u(0, τ), and will therefore be exactly equal to
that given by the expectation formula (3.5).

However, as described in section 4.3, it appears reasonable that ω(S, τ) = e−rτu(S, τ)

26



may be assumed to represent the value of the option at time t = T − τ , when the
cumulative HDD equals S. Therefore by solving the PDE for u(S, τ) in the region
0 ≤ S ≤ K, 0 ≤ τ ≤ T , we hope to gain information about the evolution of the option
value during the contract period, rather than achieving a value for the option at time
t = 0 only.

This is beneficial since in reality weather derivatives such as our HDD put option
tend to be traded during the contract period, and hence may need to be valued at any
time t, 0 ≤ t ≤ T . Mid-contract valuation is also necessary for a company to establish
the value of its option portfolio at a point in time.

6.2 Numerical Solution

We will show how we implement the Crank-Nicolson scheme analysed in Chapter 5 to
solve PDE (6.1) with initial and boundary conditions (6.5), (6.6) and (6.7).

The scheme is

un+1
j − un

j

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆S)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆S)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
+

1
2

{
µT−τn

1
2∆S

(un
j+1 − un

j−1)

+ µT−τn+1

1
2∆S

(un+1
j+1 − un+1

j−1 )
}

,

where un
j ' u(Sj , τn), Sj = j∆S, τn = n∆τ .

If we set

λn =
1
4
σ2

T−τn

∆τ

(∆S)2
, and

νn =
1
4
µT−τn

∆τ

∆S
,

the scheme becomes

un+1
j − un

j = λn(un
j+1 − 2un

j + un
j−1) + λn+1(un+1

j+1 − 2un+1
j + un+1

j−1 )

+νn(un
j+1 − un

j−1) + νn+1(un+1
j+1 − un+1

j−1 ).

This rearranges to

(−λn+1 − νn+1)un+1
j+1 + (1 + 2λn+1)un+1

j + (−λn+1 + νn+1)un+1
j−1

= (λn + νn)un
j+1 + (1− 2λn)un

j + (λn − νn)un
j−1.
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We let j run from 0 to J , where J∆S = K. Then we can write the problem as the
(J − 1)-dimensional tridiagonal matrix system

Aun+1 = Bun + cn,

where

A =



1 + 2λn+1 −λn+1 − νn+1 0 . . . 0

−λn+1 + νn+1 1 + 2λn+1 −λn+1 − νn+1

...

0 −λn+1 + νn+1
. . . . . . 0

...
. . . . . . −λn+1 − νn+1

0 0 −λn+1 + νn+1 1 + 2λn+1


,

B =



1− 2λn λn + νn 0 . . . 0

λn − νn 1− 2λn λn + νn

...

0 λn − νn
. . . . . . 0

...
. . . . . . λn + νn

0 0 λn − νn 1− 2λn


,

and the column vectors un,un+1and cn are given by

un =



un
1

un
2
...
...

un
J−1

 ,un+1 =



un+1
1

un+1
2
...
...

un+1
J−1

 , cn =


(λn+1 − νn+1)un+1

0 + (λn − νn)un
0

0
...
0

(λn+1 + νn+1)un+1
J + (λn + νn)un

J

 .

Given un, we use the boundary conditions (6.6) and (6.7) to compute cn and hence the
right hand side of the system, dn = Bun +cn. We then solve the system Aun+1 = dn

using an LU tridiagonal matrix solver. We start with u0, as given by the initial con-
dition (6.5), and step forward in increments of ∆τ , until we reach uN , where T = N∆τ .

Note that, if λn+1 ≥ |νn+1|, then

−λn+1 + νn+1 ≤ 0, and
−λn+1 − νn+1 ≤ 0,

so
| − λn+1 + νn+1|+ | − λn+1 − νn+1| = 2λn+1 < |1 + 2λn+1|,
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and therefore the matrix A is strictly diagonally dominant and hence non-singular,
implying that the system has a unique solution.

The condition λn+1 ≥ |νn+1| is equivalent to

1
4
σ2

T−τn+1

∆τ

(∆S)2
≥ 1

4
|µT−τn+1 |

∆τ

∆S
,

or

∆S ≤
σ2

T−τn+1

|µT−τn+1 |
, (6.8)

for each value of n, 0 ≤ n ≤ N − 1. This is a sufficient condition for the system to
have a unique solution.

In fact it can be shown using eigenstructure analysis that the matrix A is non-singular
for all real values of λn and νn (see Nichols [15]) and hence that the system will always
have a unique solution.

6.3 Results

We have applied the previous methodology to solve the PDE (6.1) with initial and
boundary conditions (6.5), (6.6) and (6.7) for the example contract detailed in section
1.3. We used an HDD step-length of ∆S = 17.5 (100 HDD steps, since we have
0 ≤ S ≤ 1750), and a time-step of 1 day (151 time-steps, since T = 151 days).

Figure 6.1: Numerical solution of PDE for Cumulative HDD using the Crank-Nicolson
method
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Two numerical issues are apparent from Figure 6.1:

1. It can be seen that our numerical solution contains ‘spurious oscillations’. This
is consistent with Morton [12], which shows that discretising the convection term
using central differences for PDE’s with low diffusion relative to convection can
produce solutions containing spurious oscillations.

In the case of our PDE:

uτ =
1
2
σ2

T−τuSS + µT−τuS ,

the diffusion term has magnitude 1
2σ2

T−τ and the convection term has magnitude
µT−τ .

In solving this PDE numerically we have calculated the volatility and drift of
the cumulative HDD, σT−τ and µT−τ respectively, using the approximation of
equation (4.2):

St+∆t − St ∼ N(µt∆t, σt

√
∆t), (6.9)

combined with our analysis of historical daily cumulative HDD increments in
Chapter 2.

For ∆t = 1 day, equation (6.9) becomes

St+1 − St ∼ N(µt, σt).

This tells us that

µt = µT−τ = the mean of the daily increment St+1 − St, and
σt = σT−τ = the standard deviation of the daily increment St+1 − St.

From our historical data analysis, the average value (over all days in the contract
period) of a particular day’s mean cumulative HDD increment is 13.02, and the
average value of the standard deviation of this increment is 3.269.

The diffusion term therefore has magnitude 1
2σ2

T−τ ' 5, compared to the con-
vection term which has magnitude µT−τ ' 13. These values show that our PDE
is indeed convection-dominated.

Taking the minimum value of the diffusion term and the maximum value of
the convection term implies that condition (6.8) becomes ∆S ≤ 0.30. This is
not satisfied by our choice of step-size ∆S = 17.5, but the condition is sufficient
and not necessary, and from both Nichols [15] and Figure 6.1 we know that the
system does have a unique solution. However, we note that condition (6.8) is
equivalent to the cell-Peclet condition (see Anderson [2]):µT−τ∆S

1
2σ2

T−τ

 ≤ 2.
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Anderson [2] concludes that when this condition is violated (as in our case), the
numerical solution produced by the standard central-difference approximation
will be oscillatory. This is consistent with the behaviour of our solution apparent
from Figure 6.1. To satisfy the cell-Peclet condition for this scheme, that is to
enforce ∆S ≤ 0.82, is not feasible in practice due to limited computer resources.
We will examine alternative methods of dealing with this problem in the next
chapter.

2. Another feature of our numerical solution as shown in Figure 6.1 is that a dis-
continuity exists between the boundary condition S = 0 and the solution for
S > 0. This is due to the fact that the boundary condition u(0, τ) is not smooth
(it is equal to the minimum of a function of τ and the payment cap - see (6.6)),
whereas the solution for S > 0 is smooth. We will discuss this matter in more
detail and consider methods of resolving the issue in the next chapter.

With the exception of these two numerical issues, the evolution of the option value
between the initial and boundary conditions, as shown by Figure 6.1, appears reason-
able. We see that, as time t increases from 0 to T , S has to increase at an almost
constant rate to maintain the same option value. This rate is approximately equal to
the average, µ, of the daily drift rates, µt, since the PDE is convection-dominated and
therefore approximates the wave equation with wave speed µ. Similarly, for a fixed
value of S (0 < S < K), the option value increases with time, as the expected value
of S at expiry effectively decreases.

31



Chapter 7

Resolution of Numerical
Issues for Cumulative HDD
PDE

7.1 Spurious Oscillations

7.1.1 Downwind/Upwind Scheme

As per Morton [12], it is the discretisation of the convection term using central differ-
ences that has produced the spurious oscillations in Figure 6.1. This suggests that we
should be able to resolve this numerical issue by discretising the convection term using
a downwind/upwind scheme. We will therefore implement the Crank-Nicolson scheme
with downwind/upwind convection, analysed in Chapter 5. We note from section 5.2
that this scheme is only first order accurate in τ and S. We shall therefore need to use
more grid-points for each variable to achieve the same significant figures of accuracy
as that in the previous chapter. In addition, this scheme is not unconditionally sta-
ble. From section 5.2, we require maxτn

|µT−τn
|∆τ ≤ ∆S for Fourier stability. From

our historical temperature data analysis, we have maxτn |µT−τn | = 15.7, and so we
require 15.7∆τ ≤ ∆S. This is satisfied by the step sizes used in the previous section:
∆S = 17.5 and ∆τ = 1.

We recall that the Crank-Nicolson scheme with downwind/upwind convection is

un+1
j − un

j

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆S)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆S)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}

+


µT−τn

1
∆S

(
un

j+1 − un
j

)
if µT−τn

> 0 (downwind)

µT−τn

1
∆S

(
un

j − un
j−1

)
if µT−τn

< 0 (upwind).

Since we are working with cumulative HDD, and HDD are positive by definition, the
drift µT−τn

≥ 0, and hence we choose the downwind scheme.
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Following the same approach as in section 6.2, if we set

λn =
1
4
σ2

T−τn

∆τ

(∆S)2
, and

νn = µT−τn

∆τ

∆S
,

our problem becomes

Aun+1 = Bun + cn,

where

A =



1 + 2λn+1 −λn+1 0 . . . 0

−λn+1 1 + 2λn+1 −λn+1

...

0 −λn+1
. . . . . . 0

...
. . . . . . −λn+1

0 0 −λn+1 1 + 2λn+1


,

B =



1− 2λn − νn λn + νn 0 . . . 0

λn 1− 2λn − νn λn + νn

...

0 λn
. . . . . . 0

...
. . . . . . λn + νn

0 0 λn 1− 2λn − νn


,

and

cn =


λn+1u

n+1
0 + λnun

0

0
...
0

λn+1u
n+1
J + (λn + νn)un

J

 ,

with un and un+1 defined as before.

Note that in this case we have

| − λn+1|+ | − λn+1| = 2λn+1 < |1 + 2λn+1|,

and therefore the matrix A is always strictly diagonally dominant and hence non-
singular, implying that the system has a unique solution.

We have used the same method as in section 6.2 to solve this tridiagonal system. We
used the same HDD step-length (∆S = 17.5) and time-step (1 day) as in section 6.3.

We can see from Figure 7.1 that the spurious oscillations have been eliminated, as
desired.
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Figure 7.1: Numerical solution of PDE for Cumulative HDD using the Crank-Nicolson
method with downwind convection

7.1.2 Semi-Lagrangian Method

Although the downwind scheme implemented in the previous section can be seen to
eliminate the spurious oscillations, it is only first order accurate in τ and S. Hence we
have lost accuracy in our solution compared to that achieved by the Crank-Nicolson
method. Here we will describe and implement the semi-Lagrangian method with mono-
tone interpolation, in an attempt to improve the accuracy of our solution whilst also
eliminating spurious oscillations.

Our PDE (6.1) is

uτ =
1
2
σ2

T−τuSS + µT−τuS ,

which can be written as

∂u

∂τ
− µT−τ

∂u

∂S
=

1
2
σ2

T−τ

∂2u

∂S2
. (7.1)

Using the Chain Rule, we have

du

dτ
=

∂u

∂τ
+

∂u

∂S

dS

dτ
. (7.2)

By comparing (7.1) and (7.2), we see that we can write our PDE as the following
system of equations:

dS

dτ
= −µT−τ , (7.3)

du

dτ
=

1
2
σ2

T−τ

∂2u

∂S2
. (7.4)
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We use a grid, as before, with un
j ' u(Sj , τn), where Sj = j∆S, τn = n∆τ . To

construct a semi-Lagrangian scheme, we begin by assuming that the solution is known
at τ = τn, and make a forward step in τ using the method of characteristics. We wish
to find the finite difference solution un+1

j at each grid point Sj = j∆S.

Figure 7.2: Construction of the semi-Lagrangian method

The characteristic is a straight line with gradient dτ
dS , which from (7.3) is given by

dτ

dS
= − 1

µT−τ

= − 1
µT−τn+1

at τ = τn+1.

We extend this characteristic from τn+1 back to τn, where it passes through the de-
parture point Sd. (See Figure 7.2).

We can therefore calculate Sd by

Sd = Sj + µT−τn+1∆τ.

We then apply the “Crank-Nicolson” scheme to equation (7.4), to obtain

un+1
j − un

d

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆S)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆S)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
, (7.5)
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where un
d is the approximation to u at the departure point (Sd, τn).

Generally Sd will not lie on a grid-point of S, and therefore interpolation will be
required to evaluate un

d .

We will start by using linear interpolation:

un
d =

(
Sd − Si

∆S

)
un

i+1 +
(

Si+1 − Sd

∆S

)
un

i ,

where Sd lies between grid points Si and Si+1.

If we write this as
un

d = αn
j un

i+1 + βn
j un

i ,

where αn
j =

(
Sd−Si

∆S

)
, βn

j =
(

Si+1−Sd

∆S

)
, our scheme (7.5) becomes

un+1
j − αn

j un
i+1 − βn

j un
i

∆τ
=

1
2

{
1
2
σ2

T−τn

1
(∆S)2

(un
j+1 − 2un

j + un
j−1)

+
1
2
σ2

T−τn+1

1
(∆S)2

(un+1
j+1 − 2un+1

j + un+1
j−1 )

}
.

Following the same approach as in section 7.1.1, if we set

λn =
1
4
σ2

T−τn

∆τ

(∆S)2
,

our problem becomes

Aun+1 = Bun + cn + dn,

where

A =



1 + 2λn+1 −λn+1 0 . . . 0

−λn+1 1 + 2λn+1 −λn+1

...

0 −λn+1
. . . . . . 0

...
. . . . . . −λn+1

0 0 −λn+1 1 + 2λn+1


,

B =



−2λn λn 0 . . . 0

λn −2λn λn

...

0 λn
. . . . . . 0

...
. . . . . . λn

0 0 λn −2λn


,

36



cn
j = αn

j un
i+1 + βn

j un
i ,

and

dn =


λn+1u

n+1
0 + λnun

0

0
...
0

λn+1u
n+1
J + λnun

J

 ,

with un and un+1 defined as before.

Note that, as for the downwind scheme, the matrix A is always strictly diagonally
dominant and hence non-singular, implying that the system has a unique solution.

We have used the same method as in sections 6.2 and 7.1.1 to solve this tridiagonal
system, with the same HDD step-length (∆S = 17.5) and time-step (1 day).

Figure 7.3: Numerical solution of PDE for Cumulative HDD using the semi-Lagrangian
method with linear interpolation

We can see from Figure 7.3 that, as for the downwind scheme, the spurious oscillations
seen in Figure 6.1 have been eliminated. The order of accuracy of the scheme is not
apparent from the graph of the numerical solution. However, as per Smith [17], and
Garcia-Navarro and Priestley [7], the use of linear interpolation in a semi-Lagrangian
scheme only results in first order accuracy, since the resulting scheme can be recast as
a first order upwind difference method. So far, therefore, we have not improved upon
the downwind scheme in section 7.1.1.
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However, it is well known that the accuracy of the semi-Lagrangian scheme can be
increased by using monotone cubic interpolation rather than linear interpolation. (See
Garcia-Navarro and Priestley [7]). The cubic polynomial is required to be monotone
to avoid problems at large gradients. (See Priestley [16]).

Garcia-Navarro and Priestley [7] suggests the use of a Hermite cubic polynomial

un
d = p(Sd) = c1(Sd − Si)3 + c2(Sd − Si)2 + c3(Sd − Si) + c4,

where the coefficients are

c1 =
di+1 + di − 2∆i

(∆S)2
,

c2 =
−di+1 − 2di + 3∆i

∆S
,

c3 = di,

c4 = un
i .

Here ∆i is the discrete slope between grid point Si and Si+1, defined as

∆i =
un

i+1 − un
i

∆S
,

and di is the S derivative of u at S = Si, τ = τn, which can be estimated by

di =
−∆i−2 + 7∆i−1 + 7∆i −∆i+1

12
for an interior point. Slightly different formulae are applied to the points which do not
have two neighbours (d0, d1, dJ−1 and dJ).

We note that the above definitions give us

p(Si) = un
i ,

p(Si+1) = un
i+1,

p′(Si) = di,

p′(Si+1) = di+1,

as desired.

As per Garcia-Navarro and Priestley [7], the monotonicity of this cubic interpolant
is enforced by first imposing a necessary condition on the value of the derivatives:

{
sign(di) = sign(∆i) = sign(di+1), ∆i 6= 0
di = di+1 = 0, ∆i = 0,

and then limiting their values such that

di = sign(di) min(|di|, |3∆i−1|, |∆i|).

Figure 7.4 shows the result of implementing this monotone cubic interpolation with
∆S = 17.5 and a time-step of 1 day.

38



Figure 7.4: Numerical solution of PDE for Cumulative HDD using the semi-Lagrangian
method with monotone cubic interpolation

7.1.3 Accuracy Testing

Since the order of accuracy of the downwind and semi-Lagrangian (with linear/cubic
interpolation) schemes is not apparent from the numerical solution graphs in Figures
7.1, 7.3 and 7.4, we have used the numerical results to perform some accuracy testing.
We have chosen four representative points on the S − t grid, and for each scheme,
calculated the average value of ω at these points when the number of cumulative HDD
steps J = K

∆S = 8, 16, 32 and 64 (using ∆τ=1 day). From the previous theory, the
semi-Lagrangian scheme with monotone cubic interpolation should be the most ac-
curate. We have therefore taken the average value of ω produced by this scheme for
J=64 to be the ‘exact’ solution, and hence calculated a representative absolute error
of the solution produced by each scheme for J=8, 16, 32 and 64.

Figure 7.5 shows the natural logarithm of the representative absolute error ε plot-
ted against the natural logarithm of the cumulative HDD step-length ∆S for each
scheme. For a scheme that is pth order accurate in S, we should find that

ε ∝ (∆S)p,

and hence that
ln(ε) = p ln(∆S) + c,

where c is a constant. This implies that the gradients of the lines in Figure 7.5 should
approximate the order of accuracy in S of the respective schemes.

Since order of accuracy is an asymptotic result, we are really interested in the gradient
of the lines for very small ∆S. However, in practice, we are unable to obtain the
numerical solution of the PDE for small ∆S, as we are restricted by the availability of
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computing resources, and by the conditional stability of the downwind scheme (since
we are fixing ∆τ = 1 day). It can be seen from Figure 7.5 that the lines for the down-
wind scheme and semi-Lagrangian scheme with linear interpolation have almost unit
gradient, which appears to be consistent with our previous assertion that these two
schemes are first order accurate in S. The gradient of the line for the semi-Lagrangian
scheme with monotone cubic interpolation appears to have a slightly greater gradient,
indicating consistency with the theory that this scheme has a higher order of accu-
racy. However, for more conclusive results, we would need to perform this analysis
for smaller ∆S, which would require greater computing resources and the use of a
smaller ∆τ (for stability of the downwind scheme). We have not decreased ∆τ beyond
1 day because our historical temperature data is only defined on a daily basis. Further
refinement of the time-step would be possible if interpolation of the daily historical
data were performed, but this is beyond the scope of this dissertation. (See section
10.3.)

Figure 7.5: Representative absolute error for downwind and semi-Lagrangian schemes

7.2 Discontinuity at S = 0

The boundary condition u(0, τ) given by equation (6.6) is shown graphically in Figure
7.6. We can see that this boundary condition is not smooth, in that the first derivative
uτ does not exist at τ = 119 (t = 32) days. However for S > 0, the solution u(S, τ) is
smooth as uτ exists for all τ . This has resulted in a discontinuity between the solution
for S = 0 and that for S > 0, apparent from Figures 6.1, 7.1, 7.3 and 7.4. (Recall that
our solution is given by ω(S, τ) = e−rτu(S, τ).)

We observe that since the one-sided first derivative uτ changes suddenly at (S = 0, t =
32), the second derivative uττ does not exist at this point. It is therefore likely that
uττ will be large along the start of the ‘ridge’ that evolves from this point for S > 0
(running from (S = 0, t = 32) to (S = 1750, t = 151)). (See Figure 6.1.) Similarly we
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may expect uτττ and higher derivatives to be large in the same region. This means
that the Taylor series expansion of the truncation error for the Crank-Nicolson scheme
(see equation (5.9)) does not decrease term by term, and so we cannot neglect higher
order terms. This is also the case for the Taylor series expansions of the truncation
error for the downwind and semi-Lagrangian schemes. It is therefore possible that all
of these schemes will lose accuracy in this region.

One possible approach to resolving this issue would be to refine our grid (decrease
the cumulative HDD step-length and the time-step) around the point (S = 0, t = 32)
and also around the ridge that runs from (S = 0, t = 32) to (S = 1750, t = 151).
However since this ridge is not fixed in S or t, an irregular grid of this form would be
very difficult to construct in practice. (See section 10.3.) Also, as mentioned in the
previous section, decreasing the time-step beyond one day would require interpolation
of the historical temperature data, which is not within the scope of this dissertation.

We could also consider using an irregular grid where the ridge running from (S =
0, t = 32) to (S = 1750, t = 151) was taken to be one of the grid lines. However this is
complicated by the fact that the drift µt and volatility σt change on each time-step,
so the ridge itself is not a straight line. (See section 10.3.)

Figure 7.6: Boundary condition u(0, τ) for Cumulative HDD PDE
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Chapter 8

Solution of the PDE for
Temperature

8.1 Introduction

We again consider the general PDE set out in equation (4.20) of Chapter 4, but this
time assume that the independent variable z represents temperature. We therefore
replace z by X, and the PDE becomes

uτ =
1
2
σ2

T−τuXX + µT−τuX . (8.1)

To be consistent with the PDE for cumulative HDD, we would like our initial condition
to take the form

u(X, 0) = P (X),

where P (X) is the option payoff. However, the option payoff at expiry does not depend
on the temperature X at the expiry date; instead it depends on the cumulative HDD at
expiry. We therefore need to include the variable S (cumulative HDD) in our solution
for u, and the initial condition then becomes

u(X, S, 0) = P (S) = min {max(K − S, 0)× tick, cap} . (8.2)

From (4.22) and (4.23), assuming that u is a function of S as well as of X and τ , our
boundary conditions take the form

u(X1, S, τ) = erτB1, and
u(X2, S, τ) = erτB2,

where B1 and B2 are the option values at X = X1 and X = X2 respectively.

To derive these boundary conditions, we consider the two extreme cases:

1. As X → −∞, the cumulative number of HDD, S → ∞ which means that
K − S < 0 and so the payoff from the option will be zero. This implies that
the value of the option at time t = T − τ must be zero.
Therefore we have X1 = −∞, B1 = 0.
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2. As X → +∞, the contract period is assumed to be so warm, and hence the
cumulative number of HDD, S, so small that (K − S) × tick > cap, and so the
payoff from the option will be the payment cap. This implies that the value of
the option at time t = T − τ must be e−rτ cap.
Therefore we have X2 = +∞, B2 = e−rτ cap.

Hence the boundary conditions are

u(−∞, S, τ) = 0, and (8.3)
u(+∞, S, τ) = cap. (8.4)

Here we are assuming that ω(X, S, τ) = e−rτu(X, S, τ) may be assumed to represent
the value of the option at time t = T − τ when the temperature is equal to X and the
cumulative HDD equal to S, for the reasons outlined in section 4.3.

8.2 Numerical Solution

We wish to solve PDE (8.1) with initial and boundary conditions (8.2), (8.3) and (8.4).
It may appear that we have to solve for u as a function of three independent variables,
X, S, and τ . However, what we actually have is akin to a discretely-sampled Asian
option, where the option payoff depends on a discretely-measured (on a daily basis in
our case) arithmetic average or running sum of the underlying (cumulative HDD being
a modified running sum of temperature). There is a recognised strategy for valuing
such an option (see Wilmott et al [18], [19] and Zvan et al [20]), which we apply to
our problem as follows:

1. Our option value depends on the cumulative HDD

S =
N∑

i=1

max(18−Xi, 0), (8.5)

where Xi is the average temperature on day i, and N is the number of days in
the contract period (151 for our example contract detailed in section 1.3).

S is updated discretely, and is therefore constant between the daily sampling
points. This implies that, between the daily sampling points, the PDE for the
option value is simply (8.1) with S treated as a parameter.

We therefore start at τ = 0 (t = T ), where the option value is given by ini-
tial condition (8.2), and step forwards in τ (backwards in time t), solving PDE
(8.1) between daily sampling points. On each step we use the value of the op-
tion immediately after the previous daily sampling point as initial data. This
gives the value of the option until immediately before the current daily sampling
point. Between sampling points, we solve the PDE using the Crank-Nicolson
scheme implemented in the same way as that described in section 6.2, but with
the boundary conditions (8.3) and (8.4).
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2. At the current daily sampling point, the value of S is updated. If Sn is the
cumulative number of HDD at day n, from definition (8.5), we have

Sn = Sn−1 + max(18−Xn, 0). (8.6)

We assume, when valuing an option, that there are no riskless arbitrage op-
portunities (see Hull [9]). This means that the option price can not change
discontinuously. In particular, the option value must be continuous across a
daily sampling point. If we consider a sampling point tn, we must therefore have
the condition

u(Xn, Sn, t+n ) = u(Xn, Sn−1, t
−
n ),

where t−n and t+n are the values of time t immediately before and after the sam-
pling point. Rewriting this in terms of τ = T − t for the purpose of solving our
PDE, we obtain

u(XN−n, SN−n−1, τ
+
n ) = u(XN−n, SN−n, τ−n )

at sampling date τn.

Substituting from (8.6), and assuming that X is continuous and takes the same
value immediately before and immediately after sampling, this becomes

u(X, SN−n−1, τ
+
n ) = u(X, SN−n−1 + max(18−X, 0), τ−n ).

Since SN−n−1 does not change from τ+
n to τ−n+1, we can drop its suffix, and arrive

at the ‘jump’ condition

u(X, S, τ+
n ) = u(X, S + max(18−X, 0), τ−n ). (8.7)

We apply this jump condition at the current daily sampling point to deduce the
value of the option immediately after the present sampling date.

3. Note that u depends on the value of S up to N ×max(max(18−X, 0)), or equiv-
alently, up to N × (18−min(X)). If we take the minimum temperature X to be
−50 ◦C, say, this gives us a maximum value of S of 10268 (for N = 151).

We will only be considering a range of X of magnitude −50 ≤ X ≤ 50, compared
to a range of S of magnitude 0 ≤ S ≤ 10268. It is not therefore computationally
feasible to make ∆S as small as ∆X. This means that, in applying jump condi-
tion (8.7), S + max(18−X, 0) may not fall on a grid point of S. In this case we
use linear interpolation to approximate the value of u at S + max(18−X, 0).

We first find grid points Si and Si+1, where Si = i∆S, such that

Si < S + max(18−X, 0) < Si+1.

We then have
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u(X, S + max(18−X, 0), τ) = u(X, Si, τ) +
{ (

u(X, Si+1, τ)− u(X, Si, τ)
Si+1 − Si

)
×(S + max(18−X, 0)− Si)

}
.

This linear interpolation can be shown to be accurate to O((∆S)2) for smooth
u. This is consistent with the second order accuracy in X and τ achieved by the
Crank-Nicolson scheme (see Chapter 5).

4. We repeat this process as necessary to arrive at the value of our option at time
t = 0 (τ = T ). Since we are solving the PDE on a three-dimensional grid
(X ×S× τ), we can not use this method to provide graphical information about
the evolution of the option value (we would require a four-dimensional surface).
However, since we know that at time t = 0 we must have S = 0 (S is cumulative),
by setting S = 0, we can obtain the value of the option at t = 0 in terms of the
initial temperature X0.

In solving this PDE numerically, we calculate the temperature volatility and drift,
σT−τ and µT−τ respectively, by applying the same method as that used to calculate
the cumulative HDD volatility and drift in Chapter 6. We use the approximation of
equation (4.2):

Xt+∆t −Xt ∼ N(µt∆t, σt

√
∆t), (8.8)

combined with our analysis of historical daily temperature increments in Chapter 2.

For ∆t = 1 day, equation (8.8) becomes

Xt+1 −Xt ∼ N(µt, σt).

This tells us that

µt = µT−τ = the mean of the daily increment Xt+1 −Xt, and
σt = σT−τ = the standard deviation of the daily increment Xt+1 −Xt.

From our historical data analysis, the average value (over all days in the contract pe-
riod) of a particular day’s EWMA mean temperature increment is −0.0252, and the
average value of the EWMA standard deviation of this increment is 0.2285.

The diffusion term therefore has magnitude 1
2σ2

T−τ ' 0.03, compared to the con-
vection term which has magnitude µT−τ ' −0.03. These values show that our PDE
for temperature has diffusion and convection terms of the same absolute magnitude,
but is not convection-dominated. We therefore do not expect to observe spurious oscil-
lations to the same extent as those produced by the convection-dominated cumulative
HDD PDE. (See section 6.3.)

Also in this case, the sufficient condition (6.8) for the tridiagonal matrix system to
have a unique solution becomes ∆X ≤ 2.07, which is easy to satisfy in practice (see
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the next section). As remarked in section 6.3, condition (6.8) is equivalent to the cell-
Peclet condition, which when violated, causes the numerical solution produced by the
standard central-difference approximation to be oscillatory. Therefore, by satisfying
this condition, we should be able to prevent spurious oscillations from occurring in our
solution.

8.3 Results

We have applied the previous methodology to solve PDE (8.1) with initial and bound-
ary conditions (8.2), (8.3) and (8.4) for the example contract in section 1.3. We used
a temperature step-length of ∆X = 0.2 (500 temperature steps, since we are assuming
−50 ≤ X ≤ 50), a cumulative HDD step-length of ∆S = 4 (2567 HDD steps, since we
have 0 ≤ S ≤ 10268) and a time-step of 1 day (151 time-steps, since T = 151 days).

Figure 8.1: Numerical solution of PDE for temperature: t = 0, S = 0

From our historical temperature data, the mean (over the last fifty years) of the aver-
age temperature X on 31 October (time t = 0) is 9.9 ◦C. From Figure 8.1, we therefore
read off the value of ω when X0 = 9.9 to give us our initial option value to be 57,524
Euros. This is consistent with the value of 58,415 Euros obtained in Chapter 3 using
the expectation-based approach.

We observe from Figure 8.1 that the gradient dω
dX0

is very large in the region 8 ≤
X0 ≤ 18. In particular, we can calculate the value of this gradient to be 64,413
Euros/◦C at X0 = 9.9. This implies that the option value produced by this method is
extremely sensitive to the initial temperature of the period.
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The following table shows the effect of refining the temperature and cumulative HDD
step-length (for a time-step of 1 day):

∆X (◦C) ∆S ( ◦C) Option value (Euros)

0.2 4 57,524

0.2 2 57,189

0.2 1 57,096

0.1 2 57,566

0.1 1 57,475

For a fixed number of daily sampling points, we know that the combination of our
Crank-Nicolson method and linear interpolation should result in a global discretisation
error of

O((∆τ)2) + O((∆X)2) + O((∆S)2).

We can see from the previous table that the option value only changes by 49 Euros
in going from the coarsest to the finest grid. This implies that the absolute value
of our global discretisation error is not unduly significant for a fixed time-step ∆τ .
Investigation of refining the time-step is beyond the scope of this dissertation. (See
section 10.3.)
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Chapter 9

Monte Carlo Simulations and
Other Valuation Methods

9.1 Monte Carlo Simulations

‘Monte Carlo’ is a computer-based technique for generating random numbers, which
can be used to statistically construct weather scenarios. For our example contract, it
involves generating a large number of simulated scenarios of HDD to determine the
possible payoffs for the option at expiry. The value of the option is then calculated as
being the discounted average of all simulated payoffs.

To simulate the scenarios of HDD, we will use SDE (4.1):

dZt = µtdt + σtdWt,

where Zt is either the cumulative HDD or the temperature at time t.

We will choose to model temperature, since from Chapter 2, daily temperature incre-
ments fit a normal distribution more closely than daily cumulative HDD increments,
and therefore the temperature process should be the more accurate. (See equation
(4.2)).

Using Xt to represent the temperature at time t, we therefore have

dXt = µtdt + σtdWt.

Discretising using the Euler method, we obtain

Xt+∆t −Xt = µt∆t + σt(Wt+∆t −Wt),

or
Xt+∆t −Xt = µt∆t + σtε

√
∆t, (9.1)

where ε ∼ N(0, 1), by the definition of the standard Wiener process.

We use X0 = 9.9 (the mean of the daily average temperature at t = 0), and step
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forward in time increments of ∆t = 1 day using equation (9.1). Since (9.1) implies
that

Xt+1 −Xt ∼ N(µt, σt),

we calculate µt as being the (EWMA) mean of the daily temperature increment
Xt+1−Xt and σt as being the (EWMA) standard deviation (using the historical tem-
perature data). We compute ε by taking a random drawing from the standard normal
distribution. Using these inputs we construct a temperature path for the length of the
contract.

We have run 50, 000 such simulations, for each one calculating the daily HDD and
hence the cumulative HDD and payoff at expiry. We have averaged these payoffs and
discounted the average to give a value for our option at time t = 0. Figure 9.1 shows
five of these simulations.

Figure 9.1: Monte Carlo temperature simulations

The above method gives the option value at time t = 0 to be 55, 630 Euros. This
supports the results obtained using the expectation and PDE approaches in Chapters
3 and 8 respectively.

9.2 Other Valuation Methods

9.2.1 Burn Analysis

This method values the weather derivative based on the payoff that would have been
obtained if the contract had been held in the past. (See Nelken [14]). After collection
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of the historical temperature data and any necessary corrections (see section 2.3), the
steps are:

1. For each year in the past, determine what the option would have paid out.

2. Find the average of these payoff amounts.

3. Discount back to the valuation date (the contract start date).

Burn analysis values our example contract from section 1.3 at 42, 843 Euros, lower
than the values obtained in our previous methods.

However this method is clearly very simplistic, and is likely to be inaccurate with-
out considerable ‘cleansing’ of the historical data. If a temperature anomaly occurs in
any year (whether from extreme weather conditions or from errors in the data), the
use of Burn Analysis means that this anomaly may have a significant effect on the
valuation of the weather derivative. This is more of an issue for Burn Analysis than
for the expectation approach in Chapter 3, since the former gives each historical year’s
data an equal weighting, whereas the latter smooths the historical data by fitting it
to a normal distribution curve.

9.2.2 Use of Weather Forecasts

The valuation methods described and implemented in this dissertation have not taken
any meteorological forecasts into account. The values determined by these methods
can be assumed (after appropriate discounting is applied) to hold at times well before
the start of the contract period, since meteorologists generally believe that tempera-
ture predictions more than a week or so in advance are not very significant.

However as we approach the start of the contract period, we should adjust the param-
eters of our valuation model (i.e. the mean and standard deviation of the cumulative
HDD or of the daily increments in cumulative HDD / average temperature) to incor-
porate information obtained from recent forecasts. For example, if we believe that the
temperature will be higher than normal during the contract period, we should decrease
the mean of the cumulative HDD used in the expectation approach of Chapter 3.
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Chapter 10

Conclusions and Further
Research

10.1 Summary of Results

We have shown that, if the daily increments in cumulative HDD and average tem-
perature are assumed to be normally distributed (which appears reasonable from our
analysis of historical temperature data), we can formulate an SDE and use this to
derive a convection-diffusion PDE with time-dependent coefficients for the value of an
HDD put option. When the underlying process is cumulative HDD, we have found
this PDE to be convection-dominated. In this case our preferred numerical solution
technique is the semi-Lagrangian method with monotone cubic interpolation. Also in
this case, we have found that, if we assume cumulative HDD themselves to be nor-
mally distributed (consistent with our historical data analysis), we can use expectation
theory to derive a valuation result which can be applied as a boundary condition for
the PDE. When the underlying process is temperature, we have found the PDE to
have convection and diffusion terms of similar magnitude, and discovered that we can
solve this numerically as a discretely-sampled Asian option, using the Crank-Nicolson
scheme between sampling points.

The table below summarises the results obtained for the value of our example contract
in section 1.3, from the numerical solution of our PDE as well as from more traditional
methods.

Method Option value (Euros) at the contract start date

PDE
-for cumulative HDD 1 58,415
-for temperature 2 57,475

Monte Carlo Simulation 55,630

Burn Analysis 42,843
1 with boundary condition derived using expectation theory
2 for the smallest grid size investigated

51



With the exception of Burn Analysis, which we know is very simplistic and likely
to be inaccurate, the above methods give very similar results for the value of our HDD
put option at the contract start date. This demonstrates that the numerical solution
of our PDE can be used to give reasonably accurate results for the value of our weather
derivative.

10.2 Benefits and Limitations of our PDE Method

The numerical schemes used to solve the PDE all introduce a degree of error (although
so too does the discretisation used in the Monte Carlo simulation). The accuracy of
our numerical solutions has also been restricted by the fact that our historical tem-
perature data and therefore our drift and volatility parameters are only defined on a
daily basis, and so, without performing interpolation of the daily historical data, we
have not been able to use a time-step of less than one day. In addition, the value of
the option at the contract start date using the PDE for cumulative HDD is just that
given by expectation theory, and the numerical solution of the PDE for temperature
is extremely sensitive to the initial temperature of the contract period.

However, we have hypothesised that the solution of our PDE for cumulative HDD
represents the evolution of the option value. Hence it appears that this method may
be used to gain information about the value of the option during the contract period.
This is a distinct advantage of the PDE method over traditional methods which tend
to value the derivative at one point in time only.

10.3 Further Research

Further work would be required to establish that the solution of our cumulative HDD
PDE does indeed represent the evolution of our option value. We could also improve
this solution by local grid refinement or the use of an irregular grid, to resolve the
numerical issue of the discontinuity discussed in section 7.2.

It would be beneficial to examine methods of interpolating the daily historical tem-
perature data, to enable time-steps of less than one day to be used in the numerical
schemes. Assuming that an interpolation method of a sufficiently high order of accu-
racy could be used, this would increase the accuracy of our numerical solutions.

In addition we could consider developing, analysing and solving numerically PDE’s for
more physically realistic stochastic temperature processes, such as the mean-reverting
processes proposed in Brody et al [4] and Alaton et al [1].
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Appendix A

Itô’s Lemma in Integral Form

We quote the version of Itô’s Lemma given in Neftci [13]. This is applied in the deriva-
tion of the PDE in section 4.2.

Let F (St, t) be a twice-differentiable function of t and of the random process St:

dSt = µtdt + σtdWt, t ≥ 0, (A.1)

where dW is a standard Wiener process and µt, σt are well-behaved drift and diffusion
parameters.

Alternatively, in integral form, the random process can be written as

St = S0 +
∫ t

0

µudu +
∫ t

0

σudWu.

Then Itô’s Lemma states that

dF =
∂F

∂St
dSt +

∂F

∂t
dt +

1
2

∂2F

∂S2
t

σ2
t dt. (A.2)

Substituting for dSt from equation (A.1), equation (A.2) becomes

dF =
(

∂F

∂St
µt +

∂F

∂t
+

1
2

∂2F

∂S2
t

σ2
t

)
dt +

∂F

∂St
σtdWt. (A.3)

Integrating both sides of (A.3), we obtain

F (St, t) = F (S0, 0) +
∫ t

0

[
Fsµu + Fu +

1
2
Fssσ

2
u

]
du +

∫ t

0

FsσudWu. (A.4)
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