
UNIVERSITY OF READING

School of Mathematics, Meteorology and Physics

Numerical Evaluation of Oscillatory
Integrals

Chloe Ward
August 2008

This dissertation is submitted to the Department of Mathematics in partial

fulfilment of the requirements for the degree of Master of Science

Abstract

The direct wave scattering problem has long been of interest for study in many dis-

ciplines such as engineering and geology. High frequency problems present many

difficulties, since oscillatory behaviour is difficult to evaluate numerically. Numeri-

cal methods which can manage high frequencies and have a fast rate of convergence

are desirable.

This dissertation reviews one such method, from recent literature, for the nu-

merical solution of problems of wave scattering by convex obstacles. A standard

numerical method is also implemented, providing some numerical results to inves-

tigate the effects of high frequencies on such a problem.

ii

iii

I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Signed: Date:

Acknowledgements

Firstly, I would like to say thank you to Dr. Stephen Langdon for his support and

ideas while supervising this project. Also, thank you to Prof. Simon Chandler-

Wilde for his additional advice as co-supervisor. I would also like to say thank you

to EPSRC for funding this MSc.

Many thanks should also go to all my fellow MSc students for the sharing of

sweets and laughs throughout the many hours spent in the computer room. I feel

I should especially acknowledge Chris Warner who has been a fountain of knowl-

edge and a great friend throughout the year.

Lastly, thank you to my family, friends and boyfriend for their encouragement

and support over the years.

I wish to dedicate this project to the memory of my Grandad.

“To cut a long story short...”

iv

Contents

Abstract ii

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Outline . 2

2 Literature 4

2.1 Setting up the problem . 4

2.2 Reformulation . 6

2.3 Localization . 9

2.4 Partition of Unity . 12

3 Nyström Method - Implementation 15

3.1 Parametrization . 15

3.2 Implementation . 18

4 Nyström Method - Results 22

v

CONTENTS vi

4.1 Results . 22

4.2 Errors . 27

4.3 Summary . 34

5 Improved Method 35

5.1 Implementation . 35

5.2 Preliminary Tests of Functions . 40

6 Summary, Conclusions and Future Work 43

6.1 Summary . 43

6.2 Conclusions . 44

6.3 Future Work . 44

Bibliography 46

A Matlab codes - Errors 48

A.1 l.m . 48

A.2 Pn.m . 49

B Matlab codes Improved Method 50

B.1 S.m . 50

B.2 fA.m . 51

B.3 psi.m . 51

B.4 K new.m . 52

Chapter 1

Introduction

1.1 Motivation

Scattering theory has a long history and has played an important role in math-

ematical and engineering research for over a hundred years [1]. Modelling radar,

sonar and ultrasound, mentioned in [2], are just a few of the vast span of applica-

tions provoking the strong interest in acoustic and electromagnetic wave scattering

problems. Such problems are often formulated as the Helmholtz equation

4 u(x) + k2u(x) = 0 in Rm\Ω, (1.1)

where m = 2, 3, corresponding to the two-dimensional (2D) and three-dimensional

(3D) cases respectively and Ω is the convex scattering obstacle.

When solving these problems numerically, standard methods require a fixed num-

ber of discretization points per wavelength λ. For example the finite element

method involves the division of the entire domain into small finite segments such

as triangles or quadrilaterals. The behaviour of variables in each element is then

defined and assembly leads to a large matrix system which must then be solved

1

CHAPTER 1. INTRODUCTION 2

using a numerical solver such as Gaussian elimination or Gauss-Seidel. Alter-

natively we can consider the boundary element method. This is the numerical

integration over the boundary which has been divided into small boundary seg-

ments (or elements). This yields unsymmetric, full matrices [8]. This means at

higher frequencies k, where k = 2π/λ, the number of elements required for a

“good” approximation rapidly becomes very large making the method computa-

tionally expensive. Although there exist faster implementations of such standard

methods, as the size of the domain being considered gets larger relative to a small

wavelength λ, current numerical methods are dependent on λ, hence many high

frequency problems remain unsolved.

Consequently methods capable of evaluating high frequency problems would be

greatly advantageous, particularly a method which has a bounded computational

complexity as the wavenumber tends to infinity. The production of such methods

would enable the solution of arbitrarily large scattering problems.

1.2 Aims and Outline

We study the ideas and numerical method presented by [3] regarding the numer-

ical solution of scattering by convex obstacles. The paper does not directly state

the numerical method used but gives the key ideas which will be discussed in the

following Chapter 2. As mentioned above, implementing conventional numerical

methods leads to the growth in computational complexity as wavelength λ de-

creases. The literature paper [3] we study here, applies a method involving a fixed

number of degrees of freedom, independent of wavenumber k tending to infinity.

Firstly, we will implement a simple Nyström method for solving a direct scattering

problem for which the convex scatterer is a circle. This will provide a preliminary

test to investigate the effect of higher frequencies on the problem. Hence we will

produce some justification for the requirement of a method such as that presented

CHAPTER 1. INTRODUCTION 3

in [3].

We will then describe the steps to implement the method of [3]. Each of the

separate parts towards the full method will then be implemented using MATLAB.

A description of the codes used will then be provided along with an indication of

how the functions work.

Chapter 2

Literature

In this chapter we elaborate on some of the ideas referred to in Section 1.2, present

the details of the problem and provide a review of the literature paper [3].

2.1 Setting up the problem

Suppose an incident plane wave ui(x) = eikx·α, x ∈ Rm, where k denotes the

wavenumber and |α| = 1, is scattered by the bounded convex obstacle Ω. A scat-

tered wave us(x) is produced which satisfies the Sommerfeld radiation condition

lim
r→+∞

r

(
∂us(x)

∂r
− ikus(x)

)
= 0, r = |x|.

This condition guarantees that, physically speaking, the scattered wave is outgoing.

We seek the total wave

u(x) = ui(x) + us(x),

4

CHAPTER 2. LITERATURE 5

which is a solution to the Helmholtz equation, given in equation (1.1). We will

consider the case of the Dirichlet boundary condition

u(x) = 0 on Γ,

where Γ is the boundary of the convex obstacle Ω. So we will be considering the

direct scattering problem, in which we determine us(x) from the known ui(x). The

inverse scattering problem would be to determine the obstacle function from the

known behaviour of the scattered field us(x). The fundamental solution of the

Helmholtz equation (1.1) denoted here by Φ(x, y) is

Φ(x, y) :=

{
i
4
H

(1)
0 (k|x− y|) in 2D case,

exp(ik|x−y|)
4π|x−y| in 3D case,

(2.1)

for x, y ∈ Rm and x 6= y, where H
(1)
0 denotes the Hankel function of the first kind

and zero order. This can be expressed as the sum

H
(1)
0 (z) = J0(z) + iY0(z), z ∈ Rm (2.2)

where J0(z) and Y0(z) are Bessel functions of zero order, first and second kind

respectively [4]. The Hankel function is oscillatory. Using [5], we can state the

asymptotic behaviour of these Bessel functions as z → 0,

J0(z) ∼ 1,

Y0(z) ∼ 2

π
ln(z).

(2.3)

This means

H
(1)
0 (z) ∼ 2

π
ln(z) as z → 0.

Hence we see that H
(1)
0 (z) tends to −∞, as z → 0, and we conclude that Φ(x, y)

in the 2D case is singular at x = y. Noting that clearly it is also true in the 3D

CHAPTER 2. LITERATURE 6

case that Φ(x, y) is singular for x = y.

2.2 Reformulation

We want to reformulate the problem as a boundary-integral equation. Using

Green’s representation theorem we obtain

u(x) = ui(x) +

∫
Γ

Φ(x, y)
∂u(y)

∂n
ds(y), x ∈ Ω,

where n(x) is the outward pointing normal. The normal is external to the com-

putational domain, which in this case is outside the scatterer, hence we take the

normal direction into the scattering obstacle. The scattering problem is then for-

mulated as the boundary integral equation

1

2

∂u(x)

∂n
=

(
∂ui(x)

∂n
+ iγui(x)

)
+

∫
Γ

∂Φ(x, y)

∂n(x)

∂u(y)

∂n
ds(y)

+ iγ

∫
Γ

Φ(x, y)
∂u(y)

∂n
ds(y), (2.4)

where γ is a positive arbitrary constant, referred to as the coupling parameter,

ensuring that equation (2.4) is well-posed, provided γ 6= 0. If γ = 0, we cannot

guarantee uniqueness. We can re-write equation (2.4) as

1

2
µ(x) =

(
∂ui(x)

∂n
+ iγui(x)

)
+

∫
Γ

∂Φ(x, y)

∂n(x)
µ(y)ds(y) + iγ

∫
Γ

Φ(x, y)µ(y)ds(y)

(2.5)

where now we have now denoted our unknown ∂u(x)/∂n by µ(x) to simplify no-

tation. The paper [3] proposes an ansatz of the form

µ(x) = µslow(x)eikx·α, (2.6)

CHAPTER 2. LITERATURE 7

for a convex obstacle, where the new unknown function µslow(x), x ∈ Γ, is slowly

oscillatory. We can now substitute the ansatz (2.6) into equation (2.5) to obtain

1

2
µslow(x)eikx·α =

∂ui(x)

∂n
+ iγui(x) +

∫
Γ

∂Φ(x, y)

∂n(x)
µslow(y)eiky·αds(y)

+ iγ

∫
Γ

Φ(x, y)µslow(y)eiky·αds(y).

(2.7)

Thus division of (2.7) by eikx·α to simplify yields

1

2
µslow(x) −

∫
Γ

∂Φ(x, y)

∂n(x)
µslow(y)eikα·(y−x)

− iγ

∫
Γ

Φ(x, y)µslow(y)eikα·(y−x)ds(y) = ikn(x) · α+ iγ,

(2.8)

since ui(x) = eikx·α and ∂ui(x)
∂n

= ikn(x) · α. This can be more neatly written in

operator form as

1

2
µslow(x)− (Kµslow) (x)− iγ (Hµslow) (x) = ikn(x) · α+ iγ, (2.9)

where K and H denote integral operators defined as

(Kµslow)(x) =

∫
Γ

∂Φ(x, y)

∂n(x)
eikα.(y−x)µslow(y)ds(y)

(Hµslow)(x) =

∫
Γ

Φ(x, y)eikα.(y−x)µslow(y)ds(y).

(2.10)

We have set the new unknown µslow(x), in equation (2.9), to be a slowly oscillatory

function. However, the kernels of the integrals (2.10) are still highly oscillatory.

Using a standard numerical method at this stage would still require a number of

CHAPTER 2. LITERATURE 8

discretization points dependent on the wavenumber k. This will be demonstrated

in Chapter 3 by the implementation of a simple Nyström method. The paper [3]

extends the method of stationary phase and produces a convergent method which

enables the solution of problems involving arbitrary frequencies.

Method of Stationary Phase

We now give a brief explanation of the key idea of stationary phase as used in the

numerical method by [3].

The oscillatory integrals we want to evaluate are of the general form∫ 2π

0

f(x)eikφ(x)dx, (2.11)

where f(x) and φ(x) are not oscillatory. The numerical method in [3] involves

high-frequency problems. As k → ∞, the rapid oscillations in the exponential

term tend to cancel one another out. We can write∫ 2π

0

f(x)eikφ(x)dx =

∫ 2π

0

f(x)

ikφ′(x)

[
ikφ′(x)eikφ(x)

]
dx. (2.12)

Now integrating equation (2.12) by parts we obtain

1

ik

[
f(x)

φ′(x)
eikφ(x)

]2π

0

− 1

ik

∫ 2π

0

eikφ(x)

(
f(x)

φ′(x)

)′

dx. (2.13)

Due to the 2π-periodicity, the first term of equation (2.13) cancels. We repeat the

integration by parts procedure n times with the following outcome∫ 2π

0

f(x)eikφ(x)dx = O

(
1

kn

)
, for all n,

CHAPTER 2. LITERATURE 9

provided φ′(x) 6= 0. At the points where φ′(x) = 0, for which φ(x) varies most

slowly, the cancellation has least effect [6]. This idea is at the core of the method

of stationary phase. We estimate the integral by taking the sum of evaluations

over a small neighbourhood around each stationary point.

We can now find the critical points of integrals (2.10). As stated in [3], the kernels

oscillate as

eik[|x−y|+α·(y−x)] = eikφ, (2.14)

as k →∞, where x and y are the target point and source point on Γ, the boundary

of the scattering obstacle. By [4], this arises from

H
(1)
0 (z) = eiz.

[
e−izH

(1)
0 (z)

]
,

where e−izH
(1)
0 (z) is not oscillatory. One of the critical points is the target point

x, where the kernel is singular. The other critical points are the stationary points,

where the derivative of the phase function vanishes. The phase function in this

case being φ = |x− y|+α · (y−x). We consider our convex scatterer to be a circle

of radius a. The critical points of a phase as above can be found by using a polar

parameterization

x = x(θ0) = aeiθ0 and y = y(θ) = aeiθ. (2.15)

We can substitute this into phase φ, and assume α = (1, 0). This is then differ-

entiated and the stationary points can be found. This procedure is carried out in

Appendix A of [3].

2.3 Localization

We have already established in the previous Section 2.2 that the stationary points

of φ(x) make the significant contributions to the integral. Thus it is about these

CHAPTER 2. LITERATURE 10

critical points we want to localize our integration method. We will now consider

the case for which φ(x) = xp, where p ≥ 1 is a real number. As discussed in [3], this

directly applies to the integrals in (2.10) that we will be evaluating. The asymptotic

expansion of the phase in (2.14) by Taylor series is well represented by a phase

φ(x) = xp with p = 1, 2, 3 corresponding to the cases where the kernel is singular,

the stationary points (excluding shadow boundaries) and shadow boundary points

respectively. The shadow boundaries being the points, x at which α · n(x) = 0. In

order to build the method in the literature [3], we first define a function

S(x, x0, x1) =


1 if x ≤ x0,

exp
(

2e(−1/u)

u−1

)
if x0 < x < x1,

0 if x ≥ x1,

(2.16)

where

u =
x− x0

x1 − x0

, (2.17)

and x0 < x1 are real constants. Since u is as defined in equation (2.17), then

0 < u < 1. Furthermore, by some simple analysis of the function (2.16) we

observe that S(x, x0, x1) → 1, as x → x0 from above, in other words as u → 0.

Similarly we can add that S(x, x0, x1) → 0, as x→ x1 from below or u→ 1. Also

by considering the derivative dS/dx such that

dS

dx
=

du

dx
.
dS

du

=
1

x1 − x0

(
2 exp

[
−1

u
+

2e(−1/u)

u− 1

]) (
u− 1− u2

u2(u− 1)2

)
,

where u(x) is as defined in equation (2.17). We find that as x approaches x0 from

above, dS/dx tends to zero. Moreover as x approaches x1 from below, dS/dx tends

to zero. Hence we have a smooth function (2.16).

CHAPTER 2. LITERATURE 11

In [3] another function fA(x) is defined. A lemma using this is then presented

which will be used as the key idea behind the numerical method being investi-

gated, where the function fA(x) acts as a mollifying function. This is given by the

following expression:

fA(x) = S(x, cA,A)(1− S(x,−A,−cA)), (2.18)

for real numbers A > 0 and 0 < c < 1. In order to state the lemma we require an

additional function fε(x) which, for 0 < ε < A, is expressed by

fε(x) = fA

(
Ax

ε

)
. (2.19)

We now state the lemma from the literature. It means that instead of integrating

over the interval −A to A, we can evaluate over the smaller interval −ε to ε,

under certain conditions. The full proof is omitted and a brief outline of the steps

involved is given instead. The details of the proof can be found in [3].

Lemma 2.1 Given real numbers A > 0, 0 < ε < A, 0 < c < 1 and p ≥ 1, and

functions fA(x) and fε(x) defined by (2.18) and (2.19) respectively,∫ A

−A
fA(x)eikx

p

dx =

∫ ε

−ε
fε(x)e

ikxp

dx+O((kεp)−n) ∀n ≥ 1. (2.20)

Proof. (Sketch) The proof begins by defining a function

gA,ε(x) = fA(x)− fε(x).

CHAPTER 2. LITERATURE 12

Then an error E is considered such that

E ≡
∫ A

0

fA(x)eikx
p

dx−
∫ ε

0

fε(x)e
ikxp

dx

=

∫ A

cε

gA,ε(x)e
ikxp

dx

(2.21)

We can then make a substitution for xp = t and integrate by parts n times. We

know that gA,ε(x) = 0 for x = cε and x = A, as well as the derivatives vanishing

at each of these points. Hence using a similar argument to that of integration by

parts outlined in the previous section, equation (2.13), an upper bound can be

found for |E| of order given in (2.20).

2.4 Partition of Unity

Each of the critical points is covered by a region of radius dependent on the wave-

length λ and the type of critical point being considered. In particular, the point at

which the kernel is singular is covered by a region of radius proportional to λ. The

stationary points (where the derivative of phase φ is equal to zero) are covered by

a region proportional to
√
λ, and 3

√
λ at the shadow boundaries.

As discussed in [3], the integral over Γ is split into a number of integrals over

subsets of Γ. Given an integral: ∫ 2π

0

f(x)dx,

CHAPTER 2. LITERATURE 13

where f(x) has critical points Ci, i = 1, 2 . . . , n. This integral can then be split in

the following way∫ 2π

0

f(x) =

∫ 2π

0

{χ1(x)f(x) + χ2(x)f(x) + · · ·+ χn(x)f(x)} dx

+

∫ 2π

0

{1− χ1(x)− χ2(x)− · · · − χn(x)} f(x)dx,

(2.22)

where χi(x) are mollifying functions, defined as fA(x) in equation (2.18). Using

Lemma 2.1, this can then be approximated around the critical points of f(x), so

integral equation (2.22) is approximately equal to:∫ C1+ε

C1−ε
χ1(x)f(x) +

∫ C2+ε

C2−ε
χ2(x)f(x) + · · ·

+

∫ Cn+ε

Cn−ε
χn(x)f(x) +

∫ 2π

0

highly oscillatory terms

(2.23)

The highly oscillatory terms integrated over the interval [0, 2π] are neglected since

they do not include any stationary points, therefore cancelling out. This uses the

same integration by parts argument used above.

Example 2.2. Suppose there exists one stationary point at x = c and χ(x) is a

mollifying function as previously described, we have∫ 2π

0

f(x)eikφ(x)dx =

∫ 2π

0

χ(x)f(x)eikφ(x)dx+

∫ 2π

0

[1− χ(x)] f(x)eikφ(x)dx

=

∫ c+ε

c−ε
χ(x)f(x)eikφ(x)dx+

[
(1− χ(x))

ikφ′(x)
f(x)eikφ(x)

]2π

0

− 1

ik

∫ 2π

0

eikφ(x)

[
(1− χ(x))

φ′(x)
f(x)

]′
︸ ︷︷ ︸

g(x)

dx,

after localizing the integration around the critical point and integrating by parts.

CHAPTER 2. LITERATURE 14

Then using the 2π-periodicity, we can cancel the second term so∫ 2π

0

f(x)eikφ(x)dx =

∫ c+ε

c−ε
χ(x)f(x)eikφ(x)dx− 1

ik

∫ 2π

0

eikφ(x)g(x)dx.

Integrating by parts is repeated to obtain∫ 2π

0

f(x)eikφ(x)dx =

∫ c+ε

c−ε
χ(x)f(x)eikφ(x)dx+

1

(ik)n

∫ 2π

0

eikφ(x)gn(x), (2.24)

for all n.

In other words as k → ∞ the second term on the right hand side of equation

(2.24) tends to zero.

The details of implementing the method described here will follow in Chapter

5. A standard Nyström method will first be used to approximate the integrals in

equation (2.10). Chapter 3 will discuss the implementation and Chapter 4 will

provide the results of using the Nyström method.

Chapter 3

Nyström Method -

Implementation

Firstly, we will implement a simple Nyström method to solve the problem above.

This will demonstrate the effects of high wavenumbers k on the efficiency of a

standard method such as this one. Throughout we will be considering a circular

scatterer of radius a. The Nyström method is a straightforward approximation

of an integral by a quadrature formula. The integral equation is replaced by the

approximation equation and the solution reduces to a linear system [1].

We begin by describing the process of converting the problem into the polar param-

eterization form, enabling us to explain the programming steps. We then produce

some numerical results using this method which are provided in Chapter 4.

3.1 Parametrization

We want to solve equation (2.10). We will look at the case for which γ = 0.

As mentioned in Section 2.2, this will not guarantee a unique solution. However

15

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 16

this does exclude the integral in which Φ(x, y) is part of the kernel, since this is

undefined at x = y, whereas ∂Φ(x, y)/∂n(x) is defined at x = y. Hence we assume

that we will have a unique solution. Future work could allow for an arbitrary γ.

Now we will solve

1

2
µslow(x)−

∫
Γ

∂Φ(x, y)

∂n(x)
eikα·(y−x)µslow(y)ds(y) = ikn(x) · α. (3.1)

We use the polar parameterization in (2.15) and set α = (d1, d2), say. Then the

normal n(x), as described in Section 2.2, is given by (− cos θ0,− sin θ0) Therefore

writing the right hand side of equation (3.1) in terms of this parameterization gives

ikn(x) · α = −ik(d1 cos θ0 + d2 sin θ0). (3.2)

Next we consider the kernel of the integral given by

∂Φ(x, y)

∂n(x)
eikα·(y−x),

where Φ(x, y) = i
4
H

(1)
0 (k|x − y|) in the 2D case. We will calculate the normal

derivative of this function. First we set x = (x1, x2) and y = (y1, y2), and find that

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 also

Φ(x, y) =
i

4
H

(1)
0

(
k
√

(x1 − y1)2 + (x2 − y2)2
)
. (3.3)

To find the normal derivative we have

∂Φ(x, y)

∂n(x)
= n(x) · ∇xΦ(x, y)

= n1(x)
∂Φ(x, y)

∂x1

+ n2(x)
∂Φ(x, y)

∂x2

(3.4)

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 17

denoting n(x) = (n1(x), n2(x)). We differentiate (3.3) with respect to x1, using

the fact, from [4], that
∂

∂z
H

(1)
0 (z) = −H(1)

1 (z),

and using the chain rule we obtain

∂Φ(z)

∂x1

=
i

4

∂z

∂x1

∂

∂z
H

(1)
0 (z),

where z = k
√

(x1 − y1)2 + (x2 − y2)2. We can then find the derivative with respect

to x1 given by
∂Φ(x, y)

∂x1

= −ik(x1 − y1)

4|x− y|
H

(1)
1 (k|x− y|).

Similarly for the derivative with respect to x2. We want to write these in terms of

the polar parameterization, beginning with

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2

=
√
a2(cos θ0 − cos θ)2 + a2(sin θ0 − sin θ

= a
√

2− 2 cos(θ − θ0)

= 2a sin

∣∣∣∣θ − θ0

2

∣∣∣∣ .
(3.5)

Substituting these details into (3.4) and making use of some trigonometric identi-

ties leads to

∂Φ(x, y)

∂n(x)
=
ik

4
sin

∣∣∣∣θ − θ0

2

∣∣∣∣H(1)
1

(
2ak sin

∣∣∣∣θ − θ0

2

∣∣∣∣) . (3.6)

Now putting the exponential term of the kernel in polar form we obtain

exp {d1(cos θ − cos θ0) + d2(sin θ − sin θ0)} . (3.7)

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 18

This, together with the previous details calculated means we can express the kernel

in the following way:

∂Φ(x, y)

∂n(x)
=
ik

4
sin

∣∣∣∣θ − θ0

2

∣∣∣∣H(1)
1

(
2ak sin

∣∣∣∣θ − θ0

2

∣∣∣∣)×
exp {d1(cos θ − cos θ0) + d2(sin θ − sin θ0)} .

(3.8)

Hence we are solving the equation

1

2
µslow(θ0)−

∫ 2π

0

K̃(θ0, θ)µslow(θ)dθ = f(θ0), (3.9)

where

f(θ0) = −ik(d1 cos θ0 + d2 sin θ0),

and

K̃(θ0, θ) =
aik

4
sin

∣∣∣∣θ − θ0

2

∣∣∣∣H(1)
1

(
2ak sin

∣∣∣∣θ − θ0

2

∣∣∣∣) .

Note the radius of the circle, a, appears in the kernel K̃(θ0, θ) since we are now

evaluating the integral over the interval [0, 2π].

3.2 Implementation

To implement a basic Nyström method we must evaluate the integral using a

quadrature rule. Recall that K̃(θ0, θ) and µslow(θ) are 2π periodic. We approxi-

mate, for 0 ≤ θ0 ≤ 2π,

1

2
µslow(θ0)− h

N∑
n=1

K̃(θ0, nh)µslow(nh) = f(θ0),

applying the trapezoidal rule, where h = 2π/N . We want to find values for

µslow(jh), for j = 1, 2, . . . , N . Currently we have one equation with N unknowns.

Hence we set equation (3.10) to hold at each of the points θ0 = h, 2h, . . . , Nh and

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 19

we get a matrix-vector formulation

1

2



µslow(h)

µslow(2h)

...

µslow(Nh)


−h



K(h, h) K(h, 2h) · · · K(h,Nh)

K(2h, h) K(2h, 2h) · · · K(2h,Nh)

...
...

K(Nh, h) K(Nh, 2h) · · · K(Nh,Nh)





µslow(h)

µslow(2h)

...

µslow(Nh)



=



f(h)

f(2h

...

f(Nh)


(3.10)

We define approximations to µslow(jh) as µj, for j = 1, . . . , N and simplifying

(3.10) we obtain the linear system
1
2
− hK(h, h) −hK(h, 2h) · · · −hK(h,Nh)

−hK(2h, h) 1
2
− hK(2h, 2h) · · · −hK(2h,Nh)

. . .

−hK(Nh, h) −hK(Nh, 2h) · · · 1
2
− hK(Nh,Nh)



µ1

u2

...

µN

 =


f(h)

f(2h)
...

f(Nh)

 .
(3.11)

We can implement this in MATLAB, by creating functions for each of K̃(θ0, θ)

and the right hand side of equation (3.11), f(θ0, θ), using the details calculated in

Section 3.1.

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 20

Problem

The Hankel function, H
(1)
1 (z), of the first order is singular at z = 0 thus MATLAB

will return an error. This means we must look at the series expansion of this

Hankel function to input an approximation for the instances where z = 0 occurs.

Recall

H
(1)
1 (z) = J1(z) + iY1(z) (3.12)

from equation (2.2) in Section 2.1. From [4], we know each of the Bessel functions

can be expressed as a series. The Bessel function of the first kind can be expressed

in the following way

J1(z) =
z

2

∞∑
k=0

(
− z

4

)k
kΓ(2 + k)

.

Expanding this for a few terms gives

J1(z) =
z

2
(1 + c1z

2 + c2z
4 +O(z6)),

where cn are constants. Moreover, the Bessel function of the second kind can be

expressed as

Y1(z) = − 2

zπ
+

2

π
ln

(z
2

)
J1(z) +O(z)

and

zY1(z) = − 2

π
+

2z

π
ln

(z
2

)
J1(z) +O(z2).

We know that zJ1(z) = O(z) hence

zY1(z) = − 2

π
+

2z2

π
ln

(z
2

)
J1(z)+)(z2).

Now consider taking limits of zJ1(z) and zY1(z) as z → 0 and substituting this

into equation (3.12) to find that

zH1(z) = −2i

π
, as z → 0

CHAPTER 3. NYSTRÖM METHOD - IMPLEMENTATION 21

Therefore, using equation (3.8), we approximate the normal derivative of Φ(θ0, θ)

by −1/4π, at the points where θ0 = θ.

Once this has been accounted for in the coding we can look at some results for

different wavenumbers k and investigate the effects on the approximation as k

increases. This is demonstrated in the following Chapter 4.

Chapter 4

Nyström Method - Results

4.1 Results

In this chapter we present the results obtained using the Nyström method to solve

the boundary integral equation (3.1) and calculate errors. We include plots dis-

playing the results alongside observations and finally a brief summary of what has

been found using this method.

First recall the notation α = (d1, d2) from Chapter 3, where α gives the direction

of the incident wave, ui(x). Throughout the implementation we have assumed,

without loss of generality, α = (1, 0) and we have taken the radius of the scatterer

to be 1. Also note on the following plots the x-axis is labelled ‘t’ which denotes

the discretization points, such that t = 2π/N , where N is the number of nodes.

The y-axis, denoted ‘µ’, is the approximate solution the MATLAB program pro-

duces, we are plotting the absolute value. We investigate the effect of the size of

the wavenumber k by plotting approximate solutions to the integral equation for

various numbers of nodes, N .

22

CHAPTER 4. NYSTRÖM METHOD - RESULTS 23

Figure 4.1: plot displaying approximate solution against discretization points for k = 1

We see in Figure 4.1 that for N = 32 and above, the solution, loosely speaking,

appears to converge to the true solution. In comparison, Figures 4.2 and 4.3, for

k = 5 and k = 10 respectively show that the number of nodes required before we

notice this “convergence” is much greater.

Figure 4.2: plot displaying approximate solution against discretization points for k = 5

CHAPTER 4. NYSTRÖM METHOD - RESULTS 24

Figure 4.3: plot displaying approximate solution against discretization points for k = 10

Now looking at k = 50 and k = 100, shown in Figure 4.4 and Figure 4.5 respec-

tively, we see that for smaller numbers of nodes, N , the results are spurious and

highly oscillatory.

Figure 4.4: plot displaying approximate solution against discretization points for k = 50

CHAPTER 4. NYSTRÖM METHOD - RESULTS 25

Figure 4.5: plot displaying approximate solution against discretization points for k = 100

From Figure 4.7 we find that as k increases the peaks become narrower. Also,

the solutions are approaching zero around the shadow boundaries. In other words

the points θ0 such that α · n(θ0) = 0. Recall n(θ0) = (− cos θ0,− sin θ0) and

we have taken α = (1, 0). Therefore we want the points 0 ≤ θ0 ≤ 2π such that

cos(θ0) = 0. Thus the shadow boundaries are at π/2 and 3π/2. The fact that the

approximation to the solution is tending to zero around these points is expected

since as k →∞,
∂u

∂n
→ 2

∂ui

∂n

on the illuminated boundary and

∂u

∂n
→ 0 (4.1)

on the shadow boundary, as discussed in [3] and depicted in Figure 4.6.

CHAPTER 4. NYSTRÖM METHOD - RESULTS 26

Figure 4.6: Figure depicting the shadow boundaries

Figure 4.7: plot displaying approximate solution against discretization points, for N =
4096 and various k

CHAPTER 4. NYSTRÖM METHOD - RESULTS 27

4.2 Errors

We can further interpret the results by investigating the errors. We calculate the

error using the L2-norm

‖u− un‖2 =

[∫ 2π

0

|u− un|2
] 1

2

, (4.2)

where u is the exact solution and un is the approximation. We approximate this

integral using the trapezium rule

‖u− un‖2 ≈
√
h

∑
|u− un|2.

However, we do not have the exact solution and hence use the values obtained

for the largest value of nodes we previously calculated, N = 2048. This means

a direct comparison of this solution to that of a smaller number of nodes would

not be possible. For example, comparing with N = 4, would only be possible at

4 points, which would not give us a good estimate for the error between them.

Therefore we interpolate for a number of points in between. We could interpolate

linearly but we can use a more suitable method for the problem.

In this case we will use a trigonometric interpolating polynomial. In other words,

the function going through each of our data points has to be a trigonometric

polynomial; a sum of sines and cosines, the general form being

p(t) =

N/2∑
j=1

aj cos(jt) + bj sin(jt),

where aj, bj are constants. The MATLAB code used gives us uh, u2h, . . . , uNh,

which are approximations to µslow(jh) as defined in Section 3.2. To use the trigono-

metric interpolating polynomial we must have N = 2m, even. We have the equally

spaced points tj = jπ/N , j = 1, . . . , N . Referring to [7], the operator PN is then

CHAPTER 4. NYSTRÖM METHOD - RESULTS 28

defined by

PNu(t) =
N∑
s=1

u(tj)l
(N)
s (t), (4.3)

such that

l(N)
s (t) =

1

N

{
1 + 2

m−1∑
n=1

cos(n(t− ts)) + cos(m(t− ts))

}
. (4.4)

The function l
(N)
s (tj) satisfies the following

l(N)
s (tj) =

{
1 k = j,

0 k 6= j,

as this guarantees the interpolating function passes through the data points we

have calculated.

These functions are then implemented using MATLAB, programs for which are

shown in appendix A. We obtain the error for a different number of nodes, N ,

using the L2-norm shown in equation (4.2), where the interpolated solution for

N = 2048 is the approximation to the exact solution. Table 4.1 displays the errors

calculated in this way.

A plot displaying this data is shown in Figure 4.8. We notice from this that

the set of errors follows a similar trend for each k. However, the errors for k = 1

and k = 10 decrease much more rapidly as the number of nodes increases.

CHAPTER 4. NYSTRÖM METHOD - RESULTS 29

Table 4.1: Table of errors k = 1, 10, 100

Error
N k=1 k=10 k=100
2 2.3488e+000 2.3222e-001 2.2745e+002
4 3.4438e-001 2.5340e+001 2.3960e+002
8 1.0066e-002 1.8052e+001 2.3644e+002
16 1.0954e-003 2.2949e+001 2.5565e+002
32 1.3354e-004 6.6524e-001 2.6929e+002
64 1.6592e-005 7.2622e-002 6.0345e+002
128 2.0707e-006 8.8045e-003 2.1252e+002
256 2.5827e-007 1.0906e-003 1.2635e+000
512 3.1838e-008 1.3421e-004 9.5934e-002
1024 3.5375e-008 1.4906e-005 9.8394e-003

Figure 4.8: plot displaying errors against number of nodes, N , for k = 1, 10, 100 on a
logarithmic scale

Consider the values in the error Table 4.2, for k = 10, for N in between N = 16 and

N = 32. By calculating and plotting errors for intermediate N , we can investigate

at which point the error becomes ‘small’. We can also determine the number of

CHAPTER 4. NYSTRÖM METHOD - RESULTS 30

nodes N needed for the approximation to closely resemble the true solution. Figure

4.9 displays the data in Table 4.2 for k = 10. It is clear from this that at around

N = 22, the error becomes significantly smaller than that of the approximation

for N = 18 or N = 20.

Table 4.2: Table of errors, k = 10

N error k=10 N error k=10
2 2.3222e+001 22 3.8555e+000
4 2.5340e+001 24 2.2437e+000
6 2.3265e+001 26 1.4164e+000
8 1.8052e+001 28 1.0689e+000
10 1.6944e+001 30 8.3290e-001
12 1.8722e+001 32 606524e-001
14 2.6061e+001 34 5.4192e-001
16 2.2949e+001 36 4.4856e-001
18 5.4806e+001 38 3.7591e-001
20 1.1268e+001 40 3.1831e-001

Figure 4.9: plot displaying errors against number of nodes, N , for k=10

CHAPTER 4. NYSTRÖM METHOD - RESULTS 31

We now consider Figure 4.5. It is difficult for the naked eye to distinguish

between approximations beyond N = 256. However, it is clear the approximation

for N = 128 is highly oscillatory. Hence we will look at errors for numbers of

nodes between these two approximations, determining for which number of nodes

the error in the approximation becomes ‘small’. Observe Table 4.3 and Figure 4.10

displaying this data. We see that for N = 208 the error decrease a lot from that

for N = 176 or N = 192.

Table 4.3: Table of errors, k = 100

N error k=100
128 2.1252e+002
144 1.3420e+002
160 1.2260e+002
176 2.3096e+002
192 6.4333e+001
208 8.7420e+000
224 2.9045e+000
240 1.7988e+000
256 1.2635e+000

CHAPTER 4. NYSTRÖM METHOD - RESULTS 32

Figure 4.10: plot displaying errors against number of nodes, N, for k=100

Relative errors

We see from Figures 4.1, 4.3 and 4.5 that the number at which the peak of the

approximate solution appears depends on k. In other words, we see for k = 10,

N = 2048 the approximate solution reaches a peak with µ ≈ 20, whereas for

k = 100, N = 2048, the peak is with µ ≈ 200. Therefore to compare the errors

more fairly we need to calculate a relative error. This is performed using L2 norms

as follows

relative error =
‖u− un‖2

‖u‖2

,

recalling that u is the ‘exact’ solution, un the approximate solution.

Using the above we obtain Table 4.4. This is depicted in Figure 4.11 based on

a logarithmic scale for fairer comparison.

CHAPTER 4. NYSTRÖM METHOD - RESULTS 33

Table 4.4: Table of relative errors, k=1,10,100

N k=1 k=10 k=100

2 6.061e-001 8.8332e-001 9.0288e-001
4 9.6857e-002 9.6385e-001 9.5111e-001
8 2.8312e-003 6.8665e-001 9.3858e-001

16 3.0808e-004 8.7293e-001 1.0148e+000
32 3.7558e-005 2.5304e-002 1.0690+000
64 4.6665e-006 2.7624e-003 2.3955+000

128 5.8231e-007 3.3490e-004 8.4362e-001
256 7.2637e-008 4.1484e-005 5.0155e-003
512 8.9544e-009 5.1051e-006 3.8082e-004

1024 9.9491e-010 5.6698e-007 3.9059e-005

Figure 4.11: plot displaying relative errors against number of nodes for k=1,10,100

From the relative errors we observe the differences between each case of k. For

k = 1 the errors quickly become within an acceptable 1% of the approximate

solution with N = 2048, with roughly a 0.04% error at just N = 16. However, the

errors for N = 100, are not within the 1% tolerance until we have used 256 nodes.

CHAPTER 4. NYSTRÖM METHOD - RESULTS 34

4.3 Summary

As we had expected from the literature the number of discretization points needed

depends on the size of the wavenumber k. As k increases, the number of nodes,

N , needed for a “good” approximation increases proportional to this. For large

k, the number of nodes N needed greatly increases and the scheme fails since the

computer lacks the required amount of storage. The computational times also

greatly increase.

We also found that the scheme behaved as expected at the shadow boundaries. As

k increases we suppose the scheme would produce a sharper shape, as described

in Section 4.1, equation (4.1). However, to get a “good” approximation for a large

wavenumber k the number of nodes required is large. In this case, the scheme fails

again and the program is slow for wavenumbers beyond k = 1000.

We now consider the errors we have calculated. The errors produced and the

plots representing these, confirm the ideas already mentioned here. In particular

we notice that that we need at least two degrees of freedom per wavelength before

we get an approximation that even remotely resembles the true solution. However

we need more than this to get an accurate approximation, therefore the method

breaks down for small wavelengths.

Chapter 5

Improved Method

5.1 Implementation

In this chapter we will call upon the theory and ideas discussed in the literature

paper [3], as reviewed in Chapter 2. We will use this to describe the steps towards

implementing the method presented in [3].

Recall the integral equation (3.1) we want to solve

1

2
µslow(x)−

∫
Γ

∂Φ(x, y)

∂n(x)
eikα·(y−x)µslow(y)ds(y) = ikn(x) · α. (5.1)

In Chapter 3 we presented the standard Nyström method to solve this integral

equation along with results of the implementation of this in Chapter 4. Here we

parameterized the integral equation to get equation (3.9) and then simply replaced

the integral ∫ 2π

0

K̃(θ0, θ)µslow(θ)dθ,

35

CHAPTER 5. IMPROVED METHOD 36

where K̃(θ0, θ) is as defined in Chapter 3, by the sum

h
N∑
j=1

K̃(θ0, jh)µslow(jh),

where h = 2π/N . We then set the equation to hold for all θ = nh, for n = 1, . . . , N .

More precisely

µslow(mh) + h

N∑
j=1

K̃(mh, jh)µslow(jh) = f(mh),

for m = 1, . . . , N , where the function f(mh) is as defined in Chapter 3, equation

(3.9). This gave us a linear system for unknown µm defined as an approximation

to µslow(mh).

However we know this method has difficulty approximating the integral at high

frequencies. Although µslow(θ) is not oscillatory, the kernel K̃(θ0, θ) is highly os-

cillatory, hence the trapezoidal rule cannot approximate accurately.

This means we need a more efficient scheme for evaluating the integral. We now

describe the steps needed for the method used in [3]. Again we must first pa-

rameterize equation (5.1), using the same polar parameterization we used for the

Nyström method, shown in equation (2.15). The formulation of the right hand

side is the same as in equation (3.2). Also, we know from Chapter 2 that the

kernel of the integral behaves like

eik[|x−y|+α·(y−x)] = eik[|x−y|+α·y].e−ikα·x

= eikψ.e−ikα·x,

(5.2)

CHAPTER 5. IMPROVED METHOD 37

where we have denoted ψ = |x− y|+ α · y. We have written the equation (5.2) in

this manner to follow [3], in order to use the formula given by Appendix A of [3]

for the critical points of the phase ψ. This formula will be written in the explicit

form shortly.

Recall α = (d1, d2) so we can put the function ψ into a polar form to get the

following:

ψ = 2a sin

∣∣∣∣θ − θ0

2

∣∣∣∣ + a(d1 cos θ0 + d2 sin θ0). (5.3)

We assume α = (1, 0) as used in the MATLAB implementation of the Nyström

method, therefore

ψ = 2a sin

∣∣∣∣θ − θ0

2

∣∣∣∣ + a cos θ0.

As forementioned the critical points for the phase ψ are given in [3] as

0 ≤ θ − θ0 = π − 2θ0 + 4nπ ≤ 2π

or

0 ≤ θ − θ0 =
1

3
(π − 2θ0) +

4

3
πn ≤ 2π.

We can now rewrite the integral equation as

1

2
µslow(θ0)−

∫ 2π

0

K̂(θ0, θ)µslow(θ)dθ = f(θ0), (5.4)

where

K̂(θ0, θ) = a exp[ikψ] exp[−ika cos θ0] (5.5)

and f(θ0) is as defined in equation (3.9).

The first step of this improved method is to replace the integral in equation (5.4)

by ∫ 2π

0

K̂(θ0, θ) [Pnµslow(θ)] dθ, (5.6)

CHAPTER 5. IMPROVED METHOD 38

recalling from Chapter 4 that Pnµslow(θ) denotes the trigonometric interpolating

polynomial such that

Pnµslow(θ) =
N∑
j=1

µslow(jh)lNj (θ) (5.7)

and lNj (θ) is defined in the same way as equation (4.4). This enables us to only

evaluate µslow(jh), for j = 1, . . . , N whereas Pnµslow(θ) can be evaluated for any

θ. Therefore this is an approximation to the integral in equation (5.4) or more

precisely ∫ 2π

0

K̂(θ0, θ)µslow(θ)dθ ≈
∫ 2π

0

K̂(θ0, θ) [Pnµslow(θ)] dθ.

We refer to the functions S(x, x0, x1) and fA(x) defined in Section 2.3. We now

replace the integrand

g(θ0, θ) = K̂(θ0, θ) [Pnµslow(θ)]

by the sum
Ns∑
q=1

χq(θ0, θ)g(θ0, θ),

where χq are mollifying functions of the same form as fA(x) and Ns is the number

of critical points. Each of the mollifying functions have specific widths depending

on the type of critical point it envelopes. These are separated into the following

three categories:

(i) β
λ

around θ0 = θ,

(ii) β√
λ

around stationary points,

(iii) β
3√
λ

around shadow boundaries,

CHAPTER 5. IMPROVED METHOD 39

where λ is the wavelength, λ = 2π/k, for some constant β. Substituting into the

integral (5.6) gives an approximation

Ns∑
q=1

∫ 2π

0

χq(θ0, θ)K̂(θ0, θ) [Pnµslow(θ)] dθ.

Then using Lemma 2.1 we can localize the integration around the critical points

as follows:
Ns∑
q=1

∫ C+ε

C−ε
χq(θ0, θ)K̂(θ0, θ) [Pnµslow(θ)] dθ,

where C is a critical point and 2ε is the small region around the critical point.

These integrals can then be approximated using the trapezoidal rule:

Ns∑
q=1

ĥ
Nt∑
z=1

χq(θ0, zĥ)K̂(θ0, zĥ)
[
Pnµslow(zĥ)

]
,

where Nt is the number of discretization points used for the trapezoidal rule and

ĥ = 2ε/Nt. Then substituting for Pnµslow(zĥ) using equation (5.7) we obtain the

full equation

∫ 2π

0

K̂(θ0, θ)µslow(θ)dθ ≈
Ns∑
q=1

ĥ
Nt∑
z=1

χq(θ0, zĥ)K̂(θ0, zĥ)

[
N∑
j=1

µslow(jh)lNj (zĥ)

]
.

After some rearranging, the right hand side can be written as a general form

N∑
j=1

Gj(θ0)µslow(jh),

where

Gj(θ0) =
Ns∑
q=1

ĥ
Nt∑
z=1

χq(θ0, zĥ)K̂(θ0, zĥ)l
N
j (zĥ).

CHAPTER 5. IMPROVED METHOD 40

and recalling that h = 2π/N .

Using equation (5.4), the whole scheme becomes

1

2
µslow(θ0)−

N∑
j=1

Gj(θ0)µslow(jh) = f(θ0)

and we set this to hold at θ = mh, as we did for the standard method in Section

3.2. Thus producing to the linear system:
1
2
−G1(h) −G2(h) · · · −GN(h)

−G1(2h)
1
2
−G2(2h) · · · −GN(2h)

...
...

−G1(Nh) −G2(Nh) · · · 1
2
−GN(Nh)




µh

µ2h

...

µNh

 =


f(h)

f(2h)
...

f(Nh)

 , (5.8)

where µh, µ2h, . . . , µNh are defined as approximations to µslow.

5.2 Preliminary Tests of Functions

Here we will present how the functions for various components of the implemen-

tation work. The MATLAB code for each function is provided in the Appendices.

We begin with the mollifying function

f(x) = S(x, x0, x1). (1− S(x,−x1,−x0)) ,

as defined in Chapter 2, Section 2.3. This function envelopes the critical points,

localizing the integration. Hence enabling us to integrate over a smaller region.

CHAPTER 5. IMPROVED METHOD 41

Figure 5.1: Displaying an example of the mollifying function

Figure 5.1 displays an example of the shape of this function. We have used the

code of Appendix B. We have simply centred this enveloping function around the

origin. This would of course need to be adjusted to centre around the critical

point, covering an interval of width as listed in Section 5.1.

We now consider the trigonometric interpolating polynomial as defined in Chapter

4, equation (4.3). The solution points we obtain for the approximation to µslow are

only calculated for each node. This means we cannot easily compare approximate

solutions for different numbers of nodes. Hence we used this method of interpolat-

ing. We then obtain a set of intermediate points which smoothly join the points

at each node produced by MATLAB for our approximate solution. The code in

Appendix A has used 5000 points of interpolation but naturally any number can

be used depending on the restrictions of the computer.

Figures 5.2 and 5.3 are examples of using the codes in Appendix A.1 and A.2. We

can see clearly from these figures that the interpolating polynomial is a smooth

function going through each data point from the approximation.

CHAPTER 5. IMPROVED METHOD 42

Figure 5.2: Demonstrating the trigonometric interpolating polynomial with N=4, k=1

Figure 5.3: Demonstrating the trigonometric interpolating polynomial with N=16, k=10

The codes for the functions K̂(θ0, θ), given in equation (5.5) and ψ(θ0, θ), given in

equation (5.3), are also provided in Appendix B.4 and B.3 respectively.

Chapter 6

Summary, Conclusions and

Future Work

In this chapter we summarize the work carried out in this dissertation. We indicate

the main results and discuss areas for further work on the topic.

6.1 Summary

The main aims of this project were to investigate the motivation behind the method

presented by [3], produce some results for a standard numerical method to solve

the direct scattering problem and describe the steps to implement the method of

[3].

We introduced this dissertation by describing some motivation for studying the

problems of numerical evaluation of oscillatory integrals. Chapter 2 provides a lit-

erature review which describes the theory and ideas behind the numerical method

developed in [3]. We then implemented a standard Nyström method in Chapter

3 and produced results which are presented in Chapter 4. The details for the im-

43

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 44

plementation of the method from the literature were then discussed in Chapter 5.

This also contained a brief outline and preliminary testing of functions which can

be used for the implementation of the numerical method in [3].

6.2 Conclusions

The results of using the standard Nyström method, in Chapter 4, agreed with the

literature. We found that the number of nodes needed for a “good” approximation

increased proportional to wavenumber k. We observed in Section 4.3 that we re-

quire at least two degrees of freedom per wavelength before we get an approximate

solution resembling the true solution to the naked eye. It is clear, from the errors

calculated in Chapter 4, that more degrees of freedom per wavelength would be

needed to get an accurate solution.

As k increases and more nodes are needed, the computational complexity is much

greater and the program failed to provide “good” approximations for k much higher

than 2000, due to the number of nodes needed being too great and a shortage of

computer memory.

The literature paper [3] had not given the method which it was presenting ex-

plicitly and left details of the theory and method of implementing this to be de-

termined by the reader. We have covered areas of the theory in further detail. In

addition to this, Chapter 5 provides a firm foundation for further study as it closes

the gaps in the details of the implementation omitted by [3].

6.3 Future Work

There is some scope for further work on the Nyström method implemented. Ide-

ally we would want to run the program for larger values of N and k. This was

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 45

difficult because of the nature of the method as well as the time and computa-

tional constraints. Where there was some investigation into the number of nodes

for which the approximation becomes within a certain error tolerance, for k = 10

and k = 100, this could be studied in more depth. There could also be an investi-

gation into circular scatterers of varying radius a. Furthermore a more thorough

error analysis could be carried out. This method could also be extended for more

complicated convex obstacles so as to build a set of results for various cases which

could then be compared to results obtained by the numerical method in [3].

The functions and corresponding MATLAB codes needed for the full implementa-

tion of the numerical method in [3] are documented in Chapter 5 and the Appen-

dices A and B. Therefore further study would involve implementing a full program

for this numerical method using the details given in this dissertation. Firstly a

program which solves the problem as described for the Nyström method, in other

words for a circular scatterer of radius a, could be programmed.

Consider Chapter 5, Section 5.1 and the different cases of critical points listed

for which the width of the interval covered by the mollifying function is specified.

Each type of critical point has a width related to the wavelength λ. In reference

to this list in Section 5.1, the constant β could be varied in further investigations.

An error analysis of the results produced could then be carried out. Naturally the

next step would then be to extend the method for different convex obstacles.

Finally, we can remark that the dissertation has fulfilled the aims as outlined

in Chapter 1, Section 1.2.

Bibliography

[1] Colton D., Kress R., Inverse Acoustic and Electromagnetic Wave Scat-

tering, Springer, 1998, 2nd Edition.

[2] Chandler-Wilde S.N., Graham I.G., Bound-

ary integral methods in high frequency scattering.

http://www.reading.ac.uk/nmsruntime/saveasdialog.asp?

lID=26518&sID=90309

[3] Bruno O.P., Geuzaine C.A., Monro J.A, Reitich F., Prescribed error

tolerances within fixed computational times for scattering problems of arbi-

trarily high frequency: the convex case, Phil. Trans. R. Soc. Lond. A.,362,

2004, 629-645.

[4] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions with

Formulas, Graphs and Mathematical Tables, Washington, D.C.: U.S. G.P.O.,

1965, 4th printing.

[5] http://www.efunda.com/math/bessel/bessel.cfm, Bessel Function:

Bessels Differential Equation, last checked 28.07.2008.

[6] Reed M., Simon B., Methods of Modern Mathematical Physics: Scattering

Theory, Volume III, Academic Press, 1979.

46

BIBLIOGRAPHY 47

[7] Langdon S., Graham I.G., Boundary integral methods for singularly per-

turbed boundary value problems, IMA Journal of Numerical Analysis21,

2001,217-237.

[8] Becker A.A., The Boundary Element Method in Engineering: A complete

course,McGraw-Hall, 1992.

Appendix A

Matlab codes - Errors

A.1 l.m

The following code produces the function lNj (θ) as defined in Chapter 4, equation

(4.4). We have denoted N as an even number of nodes.

function L = l(y,u,m)

%Lagrange interpolating functions to be used to calculate pn

%N=2m

L=(1/(2*m))*(1+cos(m*(u-y)));

for n=1:m-1

L = L + (1/m)*cos(n*(u-y));

end;

48

APPENDIX A. MATLAB CODES - ERRORS 49

A.2 Pn.m

This code produces the trigonometric polynomial function using the code for lNj (θ)

as above. The number of points of interpolation has been selected at 5000 but

this can be amended to any number of points. The codes for calculating the

approximate solution are omitted.

%code for trigonometric interpolating polynomial function pn

function Pn = pn(N,k)

a=1; %radius of circle

d1=1; %incident direction

d2=0;

h=2*pi/N; %steplength

m=N/2;

x = mat_A(N,a,k,d1,d2)\rhs_vec(N,k,d1,d2); %our approx solution

Pn = zeros(5000,1);

u = (1:5000)*((2*pi)/5000);

for j=1:5000

for q=1:N

Pn(j) = Pn(j) + x(q)*l(q*h,u(j),m);

end;

end;

Appendix B

Matlab codes Improved Method

B.1 S.m

function s = S(t,t0,t1)

%t0<t1, where t0,t1 are scalars to input

s = zeros(size(t));

%creating a vector of zeros, the same size as input vector t

s(t<=t0) = 1;

%where the entries of t are less than t0 replace those entries in vector s

%by 1

select = t>t0 & t<t1;

%choosing entries of t which are between t0 and t1

u=(t(select)-t0)./(t1-t0);

s(select)=exp(2*exp(-1./u)./(u-1));

50

APPENDIX B. MATLAB CODES IMPROVED METHOD 51

%for each entry chosen we produce u and then replace selected

%entries in s with the exponential function calculated using u.

B.2 fA.m

function func = fA(x,x0,x1)

%to get the function f(x)=S(x,x0,x1)*(1-S(x,-x1,-x0)) as written in

%literature paper Bruno et al.

func = S(x,x0,x1).*(1-S(x,-x1,-x0));

B.3 psi.m

function p = psi(theta0, theta, a, d1, d2)

%This function is for the total phase.

%psi=abs(x-y)+alpha.y

%alpha=(1,0);

%input:

%theta0 0<theta0<2pi

%theta 0<theta<2pi

%a radius of the circle

%d1,d2 alpha=(d1,d2), take alpha=(1,0)

p = 2*a*sin(0.5*abs(theta-theta0))+a*(d1*cos(theta0)+d2*sin(theta0));

APPENDIX B. MATLAB CODES IMPROVED METHOD 52

B.4 K new.m

A function for K̂(θ0, θ) in equation (5.5).

function g = K_new(theta0,theta,a,k)

%K=a*exp(i*k*(psi-acos(theta0)))

g = a*exp(i*k*psi(theta0,theta,a,d1,d2))*exp(-i*k*a*cos(theta0));

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Aims and Outline

	Literature
	Setting up the problem
	Reformulation
	Localization
	Partition of Unity

	Nyström Method - Implementation
	Parametrization
	Implementation

	Nyström Method - Results
	Results
	Errors
	Summary

	Improved Method
	Implementation
	Preliminary Tests of Functions

	Summary, Conclusions and Future Work
	Summary
	Conclusions
	Future Work

	Bibliography
	Matlab codes - Errors
	l.m
	Pn.m

	Matlab codes Improved Method
	S.m
	fA.m
	psi.m
	K_new.m

