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Abstract

In this dissertation a moving mesh method, based on a conservation of mass

principle, is used to produce numerical approximations to the solutions of the

fourth order and sixth order nonlinear diffusion equations. The behaviour

of the moving boundary of these solutions is investigated in detail, and is

compared to existing asymptotic results for the fourth order case. For the

sixth order case, conjectures as to the behaviour of the moving boundaries

are investigated.
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Chapter 1

Introduction

Adaptive mesh techniques play an important role in improving existing finite

element methods for the numerical solution of partial differential equations,

by concentrating mesh points in areas of interest. Such areas exist when

large variations occur in the solution, which include moving boundaries,

shocks and blow up.

An adaptive mesh scheme becomes preferable to a fixed mesh scheme

when these areas of interest represent only a fraction of the domain being

investigated. Increasing resolution selectively at these regions is computa-

tonally less expensive than refinement of the mesh over the entire grid.

There are three main types of grid adaptation, the most common type

being h-refinement, which adds or removes nodes to or from the existing

mesh, resulting in local refinement or coarsening of the mesh. Another is

p-refinement, which changes the order of the polynomial used in the finite

element approximation according to the smoothness of the solutions. The

least common type is r-refinement, known as the moving mesh method,

which relocates mesh points to concentrate them where needed. Such mov-

ing meshes are attracting increasing interest, especially in the numerical

approximation of time dependent problems since the continuous movement

of the mesh allows easier inclusion of time integrators.
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Introduction

This dissertation will investigate the application of a particular moving

mesh method, based on a conservation of monitor function principle. This

method is applied, in one dimension, to a class of evolutionary, degenerate

partial differential equations (PDEs), the non-linear diffusion equations with

moving boundaries.

In Chapter Two, we provide examples of some of the applications of

nonlinear diffusion, in order to motivate the numerical solutions of these

equations. We consider the second order Porous Medium Equation, which

has been extensively investigated, and then go on to consider applications

of the fourth and sixth which are not so well known. Both physical and

biological applications are considered. In Chapter Three, we go on to con-

sider moving mesh techniques in general and give a brief account of how

they are constructed. We also introduce the principles on which the moving

mesh method we use here is based. Chapter Four then goes on to develop

this moving mesh method by constructing mesh equations based on a con-

servation of mass principle, and then outlining a finite element numerical

solution to the problem. Limitations of the model, in terms of programming

are also considered. Chapter Five introduces scale invariance to illustrate

the construction of self-similar solutions of the nonlinear diffusion equations.

These solutions are a class of true solutions which can be used to verify the

numerical solutions we obtain, since analytic solutions are not known. The

chapter concludes by looking at the scale invariant properties of the numer-

ical model. In Chapter Six, we present the numerical results obtained by

using the similarity solutions evaluated at time t = 0, as initial data for

the method. This enables us to see whether the numerical mehod produces

diffusive results as we hope that it would. We also consider the convergence

of the numerical solution to the true solution as the number of nodes in

the mesh increases, and look at issues relating to the size of the timestep.

Chapter Seven considers the moving boundary of the solution and discusses

2



Introduction

the possible behaviours that can arise as the boundary moves. We also dis-

cuss conjectures and results in the existing literature about the parameters

for which these behaviours occur. We then go on in Chapter Eight to pro-

vide numerical results of the investigation of the moving front and compare

these in the fourth order case to the results obtained by asymptotic anal-

yses. For the sixth order case we investigate whether our results support

existing conjectures. Further since analytic error analysis is not possible

for moving mesh methods, we investigte whether the results obtained on a

moving mesh match results obtained using a fixed mesh method for which

error analysis exists. Finally in Chapter Nine, we present our conclusions,

and discuss limitations of the model and possible improvements, as areas of

possible further work.
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Chapter 2

Non-Linear Diffusion

In this chapter we present some applications of nonlinear diffusion. It is

hoped that this chapter will illustrate the need for efficient numerical solu-

tions of the nonlinear diffusion equations, by providing examples of the wide

variety of physical and biological situations in which they arise.

Nonlinear diffusion equations are considered, with general form

∂u

∂t
= (−1)m

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
(2.0.1)

Equations of this type describe many physical processes such as heat transfer

in ionized gases, unconfined groundwater flow, electric transmission in cables

with resistive coatings, and many other phenomena.

The equations derive from the generalised Reynolds equation

∂u

∂t
=

∂

∂x

(
un
∂p

∂x

)
(2.0.2)

where p represents a driving force which determines the order of the equation

[17].

n represents the diffusion coefficient which represents the viscosity of the

4



Non-Linear Diffusion

material through which the diffusion is occurring.

2.1 The Porous Medium Equation

The Porous Medium equation, which is characterised by p = u in (2.0.1),

representing a gravity driven flow, is an example of a second order non-linear

diffusion equation.

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
(2.1.1)

The second order case has been widely investigated and forms the basis for

many physical models. It is used to model the percolation of gas through

a porous medium and the spreading of thin viscous liquid films spreading

under gravity, [1]. The modelling of diffusion of oxygen into a medium

which is simultaneously consuming oxygen also uses second order nonlinear

diffusion [16].

Further applications of the second order case arise in biological mod-

elling. Nonlinear degenerate diffusion is used to model bacterial density,

in models describing spatiotemporal evolution of bacterial colonies on agar

plates, [3], where

∂b

∂t
= Db

∂

∂x

(
nb
∂b

∂x

)
+ nb (2.1.2)

for nutrient concentration, n, bacterial cell density, b, and Db, the diffusion

coefficient of the bacteria.

The Porous Medium equation also occurs in medical modelling. Most

tissues of the human body, for example, bone cartilage, muscle, are porous

media, and their functioning depends on the flow of fluids such as blood

through them. Porous Medium models have been applied to better under-
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Non-Linear Diffusion

stand pathological conditions related to these materials, one example being

tumour growth.

In the first stage of tumour development, tumours are ordinarily avascu-

lar, and they gain nutrients and oxygen for growth by diffusion from already

exisiting vasculature surrounding them. Thus the size of the tumour is ini-

tially limited by diffusion through a porous medium. Non-linear diffusion

models are used to represent this stage of tumour growth, [12].

The second order non linear diffusion equation is used in electrophysiol-

ogy to describe propagation of nerve action potentials, [2], [25] . In a nerve

axon, dissipation of the energy of a moving impulse occurs as a result of

ohmic losses of internal and external ionic current flows through the axon,

which occur due to changes in membrane permeability as the impulse travels

along the axon, and is modelled by

∂v

∂t
=

(
1
rc

)
∂2v

∂x2
− jion (2.1.3)

where 1
rc represents the diffusivity of the material in the axon.

2.2 The Fourth Order Thin Film Equation

The fourth order non-linear diffusion equation

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
(2.2.1)

in the case p = −∂2u
∂x2 in (2.0.1), occurs when surface tension drives a thin

film flow, where u represents the height of the film.

The most common occurrence of the thin film equation is as a lubrication

approximation of the Navier Stokes equations for thin film viscous flows [26],

and models numerous physical processes. In the case n = 3, the equation

is used to model situations involving the spreading of a liquid film along a

solid surface, from coating flows, for example, rain running down a window

pane, to the evolution of drying paint layers [27].

6



Non-Linear Diffusion

When n = 1, the equation models flow in a Hele-Shaw cell. In a Hele-

Shaw cell, a fluid is placed between two closely spaced parallel plates, and

the fluid moves in response to pressure gradients arising from surafce tension,

and externally imposed forces, [21].

The fourth order equation has also been used to model the motion of a

contact lens on a tear fim [24]. The equation for the film height is given by

∂u

∂t
= − ∂

∂x

(
C
u3

3
uxxx − v(t)u

)
(2.2.2)

where v(t) represents the eyeball velocity.

2.3 Sixth Order Non-Linear Diffusion

This sixth order case,

∂u

∂t
=

∂

∂x

(
un
∂5u

∂x5

)
(2.3.1)

also forms the basis for physical phenomena, although this case has not been

investigated in as much detail as the fourth and second order cases.

In semiconductor fabrication, the equation is used to model a viscous

flow of silicon oxide occurring in a long thin region, under an elastic nitride

cap [18].

The slow viscous flow of silicon is modelled using the second order incom-

pressible Reynold Equation, and the elastic nitride cap is modelled by the

fourth order light beam equation. Coupling of these two equations results

in a nonlinear sixth order equation,

∂u

∂t
=

λ

12
∂

∂x

(
u3∂

5u

∂x5

)
(2.3.2)

where u is the film thickness, x represents the distance under the cap, and

λ, represents the flexural rigidity.
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Non-Linear Diffusion

Another possible application has been postulated in modelling approaches

to the wrinkling process when a compressively strained elastic film is bonded

to a viscous layer [19]. A specific example is the wrinkles formed upon an-

nealing of a compressively strained silicon germanium alloy film bonded to

a silicon substrate covered with a glass layer. This wrinkling has also been

seen in thin metal films on polymers and may have uses in optical devices

such as diffraction gratings.
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Chapter 3

Moving Mesh Methods

In this chapter, we look at moving mesh methods in the context of solving

time-dependent partial differential equations, examples of which were given

in Chapter Two. These equations have solutions with features which evolve

over time, and an adaptive numerical method is needed if these features are

to be resolved accurately.

Moving mesh methods require the generation of a mapping from a reg-

ular domain in the computational space, Ωc, to an irregular domain in the

physical space, Ω. The physical domain can be covered with a computational

mesh by connecting points in the physical space to corresponding discrete

points in the computational space. Let x denote the physical co-ordinate

in the domain Ω, and ξ, the computational co-ordinate in the domain Ωc .

Then this mapping can be defined as a one-to-one transformation described

by

x = x(ξ, t) (3.0.1)

which maps points in the computational space at time t, onto the physical

space.

Many approaches have been developed for generating moving adaptive

meshes, and most can be classified as either location based or velocity based

methods. Location based methods are so called because they seek to directly

9



Moving Mesh Methods

control the location of the mesh points, an example being the variational

method, which determines the mapping from the computational to the phys-

ical domain by minimizing a variational form, or functional [14].

3.1 Velocity Based Methods

Velocity based methods are considered in greater detail, as the moving mesh

method used in this dissertation is an example of this group. Velocity based

methods compute a mesh velocity, v = xt, using a Lagrangian like formu-

lation. The mesh point location can be found from this velocity using time

integration.

We can consider a classical Lagrangian method, as in fluid dynamics,

where the Lagrangian co-ordinates form a co-ordinate system which follows

fluid particles. Then if u(x, t) represents the velocity of the fluid, ξ represents

the reference co-ordinate of a fluid particle, and x(ξ, t), the position of the

particle at time t. The particle then evolves with

∂x

∂t
= u

We can then consider a velocity based method in two stages. First a

mapping from the computational to the physical domain is generated. Once

a suitable mapping has been determined, a motion is induced on the mesh

by considering the rate of change in time of this mapping, which generates

the moving mesh equations. These equations give each computational node

an associated velocity, which can then be used to advance the mesh forward

in time.

One of the most commonly used approaches to generate an irregular

mapping is the equidistribution principle introduced by De Boor, [11]. Here,

mesh points are chosen so that some measure is equally distributed over each

computational cell of the mesh. This measure is user defined, known as the

10



Moving Mesh Methods

monitorfunction, and is a positive function of the solution u and/or its

derivatives.

In terms of the mapping outlined in equation (3.0.1), the equidistribution

principle can be written as∫ x(ξi+1)

x(ξi)
Mdx =

1
N

∫ 1

0
Mdx (3.1.1)

for M , some monitor function, with the form

M = M(x, u, ux, uxx . . .) (3.1.2)

Possibe monitor functions include M = 1, which produces a uniform grid,

and the popular arc-length monitor, where

M =

[
1 +

(
du

dx

)2
]1/2

(3.1.3)

Other choices exist for the monitor function, which are not discussed here,

but their aim is to create a grid with low resolutions where there is low ac-

tivity in the solution, and increased resolution where there is greater change

in the solution. Many moving mesh methods have been derived using a

monitor function to control mesh movement and other methods have also

been developed which are related in some way to these methods, see for

example [14], [15], [20].

Recently, there has been much work centered on the use of moving mesh

methods applied to PDEs which possess scale invariant behaviour and self-

similar solutions [13]. Here it is proposed that the monitor function used

should, in some manner, also be scale invariant when applied to PDEs which

are scale invariant. In [5], Baines, Hubbard and Jimack, used the mass

monitor function M = u, when constructing a moving mesh method to solve

the nonlinear diffusion equations, the motivation being that these equations

are mass conserving.

11



Moving Mesh Methods

In the next chapter, a moving mesh finite element algorithm, as used in

[5] is derived for the adaptive solution of nonlinear diffusion equations with

moving boundaries in one dimension.

12



Chapter 4

A Moving Mesh Method

In this chapter a method is developed, based on conservation of the propor-

tion within each computational cell, of the total integral of the mass u, over

the domain being considered. The method is constructed to return the ve-

locities of the mesh nodes, which move so that the conservation principle is

satisfied within each interval. The velocities are obtained by differentiating

the conservation principle with respect to time, to determine how the nodes

move so mass is conserved. The new mesh positions are generated from the

velocities via a time stepping algorithm.

4.1 A Conservation Principle

Consider the general non linear diffusion equation

∂u

∂t
=

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
(4.1.1)

with u = 0 at the boundaries (x0(t), xN (t)), of the domain being considered.

Integrating equation (4.1.1) from x0(t) to xN (t) gives

13



A Moving Mesh Method

d

dt

∫ xN (t)

x0(t)
u(t) =

∫ xN (t)

x0(t)

∂u

∂t
dx+

d

dt
xN (t)

d

dxN (t)

∫ xN (t)

x0(t)
u(t)dx

+
d

dt
x0(t)

d

dx0(t)

∫ xN (t)

x0(t)
udx

=
∫ xN (t)

x0(t)

∂u

∂t
dx+ ẋN (t)u(xN (t))− ẋ0(t)u(x0(t))

Then substituting the value of ∂u
∂t from (4.1.1) gives

d

dt

∫ xN (t)

x0(t)
u(t)dx =

∫ xN (t)

x0(t)

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
dx+ [ẋu]xN (t)

x0(t)

=
[
un
∂2m+1u

∂x2m+1
+ ẋu

]xN (t)

x0(t)

= 0 (4.1.2)

using the conditions (x0(t) = 0 and xN (t)) = 0 at the boundaries. Hence

d

dt

∫ xN (t)

x0(t)
u(t)dx = 0 (4.1.3)

and so

∫ xN (t)

x0(t)
u(t)dx = 0 (4.1.4)

demonstrating conservation of mass over the domain.

A local conservation principle consistent wih mass conservation is now

introduced such that for any interior points xi−1(t) and xi(t),

∫ xi(t)

xi−1(t)
u(t)dx = constant in time (4.1.5)

d

dt

∫ xi(t)

xi−1(t)
u(t)dx = 0 (4.1.6)

14



A Moving Mesh Method

Using Leibnitz’ rule in (4.3), gives∫ xi(t)

xi−1(t)

∂u

∂t
dx+

d

dt
xi(t)

d

dxi(t)

∫ xi(t)

xi−1(t)
u(t)dx

+
d

dt
xi−1(t)

d

dxi−1(t)

∫ xi(t)

xi−1(t)
udx = 0

Substitution from (4.1.1) leads to

[
un
∂2m+1u

∂x2m+1
+ ẋu

]xi(t)

x0(t)

= 0 (4.1.7)

Further, since u = 0 at x = x0(t),

un
∂2m+1u

∂x2m+1
+ ẋu = 0 (4.1.8)

at x = xi(t) ∀i. Hence

ẋ = −un−1∂
2m+1u

∂x2m+1
(4.1.9)

except when u = 0. By continuity, (4.1.9) also holds as u→ 0.

This gives the velocity of a general mesh point, from which the new position

of the point can be calculated by time integration. The new solution u may

then be recovered from the conservation of mass principle (4.1.4), using the

new values of xi and xi+1.

4.2 Finite Element Formulation

In practice a numerical method is used to solve these equations, and here

this is obtained by using finite element discretisations. Before introducing

finite elements, a weak form of the problem is constructed. A weak form of

the conservation of mass principle (4.1.4) is

∫ xi(t)

xi−1(t)
wiu(t)dx = constant in time (4.2.1)

15



A Moving Mesh Method

where the wi are continuous and once differentiable test functions, which

form a partition of unity.
N∑
j=1

wj = 1 (4.2.2)

Figure 4.2.1: Linear Finite Element Basis Function

Differentiating with respect to time gives a weak form of equation (4.1.2)

for the nonlinear diffusion equation,

∫ x0(t)

xN (t)
w
∂

∂x

(
un
∂2m+1u

∂x2m+1
+ ẋu

)
dx = 0 (4.2.3)

The test functions used take the form of linear hat funtions, φi, as in figure

(4.1). After integration by parts, (4.2.3) gives

φi

(
un
∂2m+1u

∂x2m+1
+ ẋu

)
−

∫ xi+1(t)

xi−1(t)

∂φi
∂x

(
un
∂2m+1u

∂x2m+1
+ ẋu

)
dx = 0 (4.2.4)

The first term disappears for interior nodes as the basis function φi equals

0 at xi(t) and xi+1(t), and also disappears at the boundary nodes, since

u = 0 at these nodes. Applying the boundary conditions, equation (4.2.4)

becomes

16
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∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

ẋdx = −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂2m+1u

∂x2m+1
dx

= −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂q

∂x
dx (4.2.5)

for all interior nodes, where, for example, in the sixth order case, 2m+1 = 5

q = −∂
2p

∂2x
and p = −∂

2u

∂2x
(4.2.6)

For any u, p is obtained from the weak form of the equation

p = −∂
2u

∂2x
(4.2.7)

∫ xi+1

xi−1

φipdx = −
∫ xi−1

xi+1
φi
∂2u

∂x2

=
[
−φi

∂u

∂x

]xi+1

xi−1

+
∫ xi−1

xi+1

∂φi
∂x

∂u

∂x
dx (4.2.8)

and using the boundary condition that φ = 0 at xi+, xi− 1,

∫ xi−1

xi+1

∂φi
∂x

∂u

∂x
dx =

∫ xi+1

xi−1

φipdx (4.2.9)

Now the finite element approximations are expanded in terms of the

basis functions φi to give

u =
N∑
j=1

ujφj , p =
N∑
j=1

pjφj , q =
N∑
j=1

qjφj (4.2.10)

These forms are substituted in to (4.2.6). Then

Ku = Mp (4.2.11)
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where both K, is the standard stiffness matrix with entries of the form

Kij =
∫ xi+1(t)

xi−1(t)

∂φi
∂x

∂φj
∂x

dx (4.2.12)

and M is the standard mass matrix with entries of the form

Mij =
∫ xi+1(t)

xi−1(t)
φi(x)φj(x)dx (4.2.13)

Both matrices are tridiagonal, and the system is solved using a direct

tridiagonal solver. In a similar fashion, q can be obtained from p by solving

the mass matrix system

Kp = Mq (4.2.14)

Once q has been obtained, it is used in equation (4.2.5)

∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

ẋdx = −
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂q

∂x
dx (4.2.15)

The matrix form of this equation is difficult to solve in practice because the

resulting system creates a non symmetric matrix. It is therefore convenient

to introduce a velocity potential ψ, such that

ẋ =
dψ

dx
(4.2.16)

where ψ is piecewise linear, and the expanded finite element approximation

of ψ is given by

ψ =
N∑
j=1

ψjφj (4.2.17)

This results in (4.2.14) becoming the stiffness matrix system

K(u)ẋ = −K(un)q (4.2.18)

where K(u) and K(un) are weighted stiffness matrices. K(u) has entries of

the form

18
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Kij =
∫ xi+1(t)

xi−1(t)
u
∂φi
∂x

∂φj
∂x

dx (4.2.19)

and K(un) has entries of the form

Kij =
∫ xi+1(t)

xi−1(t)
un
∂φi
∂x

∂φj
∂x

dx (4.2.20)

for interior nodes. The integrals are evaluated within these intervals by

numerical integration using Simpson’s rule. ẋ is then recovered from ψ by

constructing a finite element formulation of equation(4.2.15),

∫ xi+1

xi−1

φiẋdx =
∫ xi+1

xi−1

φi
dψ

dx
dx (4.2.21)

which results in the mass matrix system

Mẋ = Bψ (4.2.22)

where B has entries of the form

Bij =
∫ xi+1(t)

xi−1(t)
φi
∂φj
∂x

dx (4.2.23)

Evaluations of these integrals results in an antisymmetric structure for B as

ilustrated below.

B =



0 −1
2 0 0 . . .

1
2 0 −1

2 0 . . .

0 1
2 0 −1

2

. . .
... 0 1

2 0
. . .

...
...

. . . . . . . . .


showing how dψ

dx is constructed from ψ

Once the velocities of the nodes have been found, the new position of

these nodes is found by integrating the mesh forward using any timestepping

algorithm , for example, the Forward Euler scheme.
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Once the new mesh has been obtained, the new solution on this mesh

is found by solving the conservation of mass equation (4.2.1), with the new

positions of the nodes. This solution is equivalent to solving the mass matrix

system

Mu = c (4.2.24)

where c is given by

c =
∫ xi+1(t)

xi−1(t)
φiu0dx (4.2.25)

for initial data u0. The integral is evaluated using a Gaussian Quadrature

rule, and remains constant, so preserving the distributed mass in an interval.

However, overwriting the boundary conditions u = 0 at (x0(t), xN (t))

will result in the loss of mass conservation, since the first and last equations

of (), will in general no longer be satisfied. To overcome this a mass con-

served version of () is used, in which the first equation of () is added to the

second, and the last equation to the last but one, prior to overwriting these

conditions.

4.2.1 Timestepping

The new node positions can be found using any timestepping algorithm.

In practice though, implementation of implicit schemes is a complicated

procedure. However, although implementation of explicit schemes is much

easier, the associated restrictions on the size of the timestep for stability,

can cause a problem.

The method used in this dissertation is the explict Forward Euler dis-

cretisation

ẋ =
xn+1 − xn

∆t
(4.2.26)

This scheme, although convergent, is only conditionally stable, and requires

very small timesteps to ensure stability and avoidance of node overtaking,

which results in the mesh nodes becoming tangled(see for example, Figure
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A Moving Mesh Method

(6.0.3)). This has posed a problem here for the C++ code written, due

to memory restrictions allowing only a certain number of timesteps to be

run; such a small timestep means the behaviour of the solution over longer

time scales cannot be determined. To overcome this problem, a version

of the same method implemented in FORTRAN from the work of Baines,

Hubbard, and Jimack is used to run the method for larger final times.
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Chapter 5

Self-Similar Solutions

Any numerical method used to solve the nonlinear diffusion problem would

need to have the property that the numerical solution will eventually con-

verge to the true solution. A class of true solutions called similarity solutions

are used here to verify the numerical results obtained. Once the reults have

been evaluated, the method can then be used to investigate initial data for

which no analytic solution is known.

5.1 Scale Invariance

A symmetry of the partial differential equation,

ut = f(x, u, ux, uxx, ....) (5.1.1)

is defined to be a transformation of (x, u, t) which leaves the underlying

PDE unchanged. This can be considered as a transformation of (x, u, t) to

(x̄, ū, t̄) such that

x̄ = x̄(x, u, t), ū = ū(x, u, t), t̄ = t̄(x, u, t) (5.1.2)

so that the equation satisfied by (x, u, t), is also satisfied by (x̄, ū, t̄). To con-

struct similarity solutions for the PDE, a subclass of symmetries known as
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Self-Similar Solutions

scaling transformations is considered. For any nonlinear partial differential

equation, satisfied by the set (x, u, t), a scaling transformation is described

by a mapping to (x̄, ū, t̄), given by the transformation

x = λβx̄, u = λγ ū, t = λt̄. (5.1.3)

for some arbitrary positive quantity λ. If the PDE is unchanged by the

transformation, then the system is said to be scale invariant. This is illus-

trated below for the general nonlinear diffusion problem.

Consider the equation

∂u

∂t
= (−1)m

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
(5.1.4)

under the transformation (5.1.3). The left hand side of this equation be-

comes

∂u

∂t
=
∂(λγ ū)
∂(λt̄)

= λγ−1∂ū

∂x̄
(5.1.5)

and the right hand side becomes

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
=

∂

∂(λβx̄)

(
λnγ ūn

∂2m+1(λγ ū)
∂(λβx̄)2m+1

)

= λ(γ(n+1)−(2m+2)β) ∂

∂x̄

(
ūn
∂2m+1ū

∂x̄2m+1

)
(5.1.6)

Equating equations (5.1.5) and (5.1.6) gives the transformed PDE,

λγ−1∂ū

∂x̄
= λ(γ(n+1)−(2m+2)β) ∂

∂x̄

(
ūn
∂2m+1ū

∂x̄2m+1

)
(5.1.7)

For the original equation (5.1.4) to be scale invariant under the transforma-

tion (x, u, t)⇒ (x̄, ū, t̄) requires

γ − 1 = (n+ 1)γ − (2m+ 1)β (5.1.8)
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(2m+ 1)β − nγ = 1 (5.1.9)

giving a class of symmetries

5.2 Self Similar Solutions

The boundary conditions u = 0 at a(t) = b(t) for the general equation induce

conservation of mass(see (4.1.4)), which becomes∫ b(t)

a(t)
udx =

∫ b(t)

a(t)
λγ ūd(λβx̄) = constant in time (5.2.1)

λγ+β
∫ b(t)

a(t)
ūd(x̄) = constant in time (5.2.2)

and scale invariance holds for the nonlinear diffusion equations, provided

γ + β = 0 (5.2.3)

Then it can be seen, by solving the simultaneous equations (5.1.9), and

(5.2.3), that the only self similar solution for the PDE under these condi-

tions, has

γ =
−1

n+ (2m+ 2)
β =

1
n+ (2m+ 2)

(5.2.4)

and the behaviour of the solution in the transformed coordinates will possess

the conservation property of the solution in the non-transformed space.

A similarity solution of the PDE is defined as a solution of the PDE

which is invariant under the action of the scaling transformations described

in (5.1.3). From [28], it is known that the nonlinear diffusion equations

admit a family of self similar solutions of the form,

u(x, t) = tγφ
( x
tβ

)
(5.2.5)
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5.2.1 A Fourth Order Self Similar Solution

To construct the similarity solution,for example, for the fourth order case,

similarity variables y and v are introduced such that

y =
x

tβ
=

x̄

t̄β
v =

u

tγ
=

ū

t̄γ
(5.2.6)

where y and v are independent of λ and are invariant under (5.1.3). By

equation (5.2.4), for the fourth order case, β and γ have the values.

γ =
−1
n+ 4

β =
1

n+ 4
(5.2.7)

A similarity solution is sought of the form v = f(y), by obtaining an ordinary

differential equation for v in terms of y.

Transforming the left hand side of (5.1.4) gives

∂u

∂t
=

∂

∂t
(vtγ)

= tγ
dv

dt
+ vγtγ−1

= tγ
dv

dy

∂y

∂t
+ vγtγ−1

= tγ
dv

dy

(
−βx
tβ+1

)
+ vγtγ−1

= −βtγ−1y
dv

dy
+ vγtγ−1 (5.2.8)

To transform the right hand side of (5.1.4) into v and y, first consider

∂u

∂x
=
dy

dx

du

dv

dv

dy
(5.2.9)

From (5.1.3)

dy

dx
= t−β ,

du

dv
= tγ giving

∂u

∂x
= tγ−βv′ (5.2.10)

from which,
∂2u

∂x2
= tγ−2βv′′ (5.2.11)
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∂3u

∂x3
= tγ−3βv′′′ (5.2.12)

Then

∂

∂x

(
un
∂3u

∂x3

)
=

∂

∂x
[(vnt(γn)tγ−3βv′′′]

= tγ(n+1)−3β ∂

∂x
(vnv′′′)

= tγ(n+1)−(3+n)β(v′v′′′)′ (5.2.13)

In [28], it is noted that the general nonlinear diffusion equation admits a

simple exact similarity solution for n = 1, and substituting this value of

n into (5.2.13), then equating with (5.2.8) results in the following ordinary

differential equation, cancelling powers of t,

−βyv′ + γv = (v′v′′′)′ (5.2.14)

which is independent of time. Taking t̄ = 1, the transformed solution can

be mapped back to the original co-ordinates using,

x̄ = xt
−1

n+4 , ū = ut
1

n+4 (5.2.15)

In the case n = 1,(5.2.14) is satisfied by a solution of the form

u(x, t) = t−
1
5φ

(
x

t
1
5

)
(5.2.16)

for values of β and γ given in (5.2.4).

For the purposes of evaluating the numerical results obtained in this

dissertation, a source type similarity solution given in [8], is used,

u(x, t) =
1

120(t+ τ)
1
/
5

[
ω2 − x2

(t+ τ)2/5

]2

+

(5.2.17)

where τ and ω, are arbitrary positive constants. τ = 4−5, and ω = 2 were

the values used for these constants and the distribution of this solution at

different times is shown in figure (5.2.1).

The results presented in the next section show the approximations to

this self similar solution over time, using initial data, at t = 0

u(x, 0) =
1
30

[
4− 16x2

]2

+
(5.2.18)
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Figure 5.2.1: Distribution of the fourth order self similar solution

5.2.2 A Sixth Order Self Similar Solution

Constructing the sixth order self similar solution, in the same manner as the

fourth order results in the fifth order ODE

−βyv′ + γv = (v′v′′′′′)′ (5.2.19)

where, from (),

γ =
−1
n+ 6

β =
1

n+ 7
(5.2.20)

and again, from [28], for n = 1, this ODE has a solution of the form

u(x, t) = t−
1
7φ

(
x

t
1
7

)
(5.2.21)

For evaluation of numerical results, the sixth order similarity solution

u(x, t) =
1

50400(t+ τ)
1
/
7

[
ω2 − x2

(t+ τ)2/7

]3

+

(5.2.22)

from [9] is used, with τ = 4−7, and ω = 2. The distribution of this solution

can be seen in figure (5.2.2).
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Figure 5.2.2: Distribution of the sixth order self similar solution

The initial data supplied to the program, at time t = 0 is given by

u(x, 0) =
1

120
[
4− 16x2

]3

+
(5.2.23)

5.3 Scale Invariance of the Numerical Method

In [13] Budd and Piggott propose that a numerical method to discretise

a scale invariant PDE should reflect the scale invariance properties of the

PDE, i.e. the method should possess discrete self similar solutions which are

also scale invariant. From equation(), xt−
1

n+4 and ut
1

n+4 are invariant, so it

would be hoped that these variables were also invariant under the numerical

method approximating this solution. To investigate the behaviour of the

variables, plots were constructed of the variable with time. If these variables

are indeed invariant, we would expect there to be no change in their values

over time. Figure (5.3.1) shows the invariant behaviour of these quantities,

visible in the straight line solutions, in the fourth order case, which suggests

that this moving mesh method has inherited the scaling properties of the
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PDE.

Figure 5.3.1: Invariance of the fourth order solution and mesh for 41 node

mesh
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Chapter 6

Numerical Results for the

Self Similar Solution

The numerical results presented here are compared with the similarity solu-

tions presented in chapter 5, in order to evaluate the accuracy of the moving

mesh method, in approximating nonlinear diffusion. Before the program was

run for the solutions, some initial investigations were carried out. These were

done in order to see if the numerical solution was converging to the true so-

lution, as the number of mesh nodes increased. Further investigations were

used to find the largest possible timestep that could be used before tangling

of the mesh started to occur.

Figures (6.0.1) and (6.0.2) clearly show the convergence of the numerical

solution to the true solution, as the number of nodes in the mesh increased.

However, investigation of the timestep showed that increasing the number

of nodes in the mesh, resulted in node overtaking unless the timestep was

decreased, suggesting that the timestep is proportional to the spatial scales

in the mesh. This is clearly seen in Figure (6.0.3), where for all four cases

the program was run for 100000 timesteps.

In the next two sections, results are presented for the self-similar solu-

tions described in Chapter Five, for a diffusion coefficient n = 1, both show

30



Numerical Results for the Self Similar Solution

Figure 6.0.1: Convergence of numerical solution to true solution with in-

creasing nodes, t = 0.0005
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Figure 6.0.2: Resolution of numerical solution at boundary with increasing

nodes, t = 0.0005
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Figure 6.0.3: Timestep dependence on the number of nodes in the mesh
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the numerical solution is diffusing to the exact solution with time.

6.1 Fourth Order Results

Dots represent approximate solution, and the line represents the exact so-

lution. Solutions are computed at t = 0.0005, t = 0.0025, t = 0.001, for

n = 1.0, on a 41 node mesh

Figure 6.1.1: Exact and approximate solutions for the fourth order problem.

6.2 Sixth Order Results

Dots represent approximate solution, and the line represents the exact so-

lution. Solutions are computed at t = 0.0005, t = 0.0002, t = 0.0001, for

n = 1.0, on a 41 node mesh
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Figure 6.2.1: Exact and approximate solutions for the sixth order problem.
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Chapter 7

Behaviour of the Moving

Boundary

The occurrence of fronts is an interesting feature of the nonlinear diffusion

equations, where the front is the interface between positive values of the

solution, and zero values of the solution. This interface can possess three

kinds of behaviour. Firstly, the interface can move immediately, and if it

does so, it can either retreat or advance. Secondly, a waiting time scenario

can occur, where the interface remains stationary for a finite time, and then

starts to move. Thirdly the interface can wait forever. Prediction of the

behaviour of the moving front can be important in many of the physical

applications of the nonlinear diffusion equations outlined in Chapter Two.

These behaviours are dependent on the values of n and α. n is the

diffusion coefficient and represents the viscosity of the fluid film. The values

of n will influence the speed of the moving front. For example, a large value

of n represents a high viscosity of fluid which moves with slower velocity than

a low viscosity fluid. α represents the initial contact angle of the interface;

the larger the value of α, the shallower the initial contact angle, illustrated

in Figure (7.0.1).

Waiting time behaviour occurs when the solution undergoes an initial
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Figure 7.0.1: Change in contact angle for different alpha

redistribution behind the moving front, during which time the contact angle

of the boundary readjusts. As it does so the solution waits, until that time

when the angle reaches a value for which advancing or retreating behaviour

is possible. At this time the solution begins to move suddenly, following the

behaviour that the new contact angle dictates.

7.1 Fourth Order Case

∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
(7.1.1)

with

u =
∂u

∂x
= un

∂3u

∂x3
= 0 at x = b(t) (7.1.2)

and

u = u0(x) at t = 0 (7.1.3)

where x = b(t) represents the right hand moving behaviour, whose local

behaviour will be considered.

Previous work has shown that for n ∈ (0, 3), b(t) represents a boundary

moving at finite speed. In [10], Blowey et al. consider these values of n in

detail, with various values of α, and Figure (1.1) from [10], reproduced here

in Figure (7.1.1), illustrates their results.
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Figure 7.1.1: A summary of the possible small-time behaviours with respect

to n and α

7.2 Sixth Order Case

∂u

∂t
= − ∂

∂x

(
un
∂5u

∂x5

)
(7.2.1)

with

u =
∂u

∂x
=
∂3u

∂x3
= un

∂5u

∂x5
= 0 at x = b(t) (7.2.2)

and

u = u0(x) at t = 0 (7.2.3)

where x = b(t) represents the right hand moving boundary.

Flitton and King, [17], conducted both asymptotic and numerical studies

for the sixth order problem, and presented conjectures, relating to the value

of n, which are outlined below.

A moving front regime has been identified for 0 < n < 5/2, in which the

free boundary is expected to move immediately, and the region 5/3 < n <

5/2 has been identified as one in which the free boundary should advance

instantaneously. For 5/2 < n < 6, the free boundary is not expected to
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move, as is the case for n > 6.

However, since Flitton and King use different boundary conditions from

those used in this dissertation, we base the comparison of our results with

those produced by Langdon, on a fixed mesh discretisation, in [22]
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Chapter 8

Numerical Results for the

Moving Boundary

To investigate the behaviour at the moving boundary, we take the initial

data

u0(x) = 5max
[(

9
16
− x2

)α

, 0
]
, α ∈ R+ (8.0.1)

Although no analytic solution is known for this data, a fixed mesh finite

element method, [8], exists, for the fourth order case, for which convergence

of the approximation to a weak solution, in 1D has been proved. Solutions

obtained with this scheme have been used to demonstrate the convergence

of the moving mesh solutions for the initial data (8.0.1), in [7].

For the purposes of this dissertation, the investigations are concerned

with the behaviour of the moving boundary b(t). The moving mesh method

was applied to (8.0.1), for various combinations of n and α, to test the

behaviour of the free boundary, in relation to the conjectures discussed in

7.1 and 7.2. Results are presented for certain cases.
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8.1 The Fourth Order Case

For the fourth order case, where the small-time behaviour has been de-

termined [10], the C++ program is used to verify the cases in which in-

stantaneous advancing or retreating of the boundary is expected, since this

movement will be apparent even over small time scales. For the waiting-time

cases, this program was also run to verify that initially no movement of the

boundary occurs. The FORTRAN program is then used for these cases, to

see that the solution does eventually move after a finite waiting time.

The results presented here are chosen to provide examples of each type

of behaviour

8.1.1 Instant Advance

From 7.1, we expect an instant advance of the free boundary for α < 4/n,

and 2 < n < 3. Results for n = 2.5 and two different values of α are shown

in Figure (8.1.1). The stepping seen in the plots is a result of the fact that

the numerical approximation to the boundary is calculated on a discrete

mesh.

In both cases the moving boundary advances, and the results suggest

that for larger α, the speed of the advance is slower. This is better seen in

Figure (8.1.2), where the change in the speed of advance for increasing α is

clearly seen.

For the advancing case, results in [10] suggest that the free boundary

will advance with an unbounded initial velocity, the slow over time. This has

not been seen in the results presented here, which show a linear behaviour

of the initial velocity. This difference in reults may be due to the extremely

small timescale over which it has been possible to run this program, so the

initial velocities appear linear, whereas their long term behaviour is not.

These cases were run using the FORTRAN program to see if this initial

unbounded velocity did occur, and this is shown to be the case in Figure
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Figure 8.1.1: Advancing moving front with n = 2.5, alpha = 0.5, and n =

2.5, alpha = 1.4

Figure 8.1.2: Advancing moving front for n = 1.0, alpha ∈ (0.5, 1.0)
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(8.1.3).

Figure 8.1.3: Advancing moving front for n = 1.0, alpha = 0.7, run to final

time 0.002

8.1.2 Instant Retreat

The conjectures in 7.1, suggest an instant retreat of the free boundary for

and 2 < α < 3/n. One of the results obtained supporting this is presented

here.

Figure (8.1.4), shows the retreat of the solution for n and α satisfying

2 < α < 3/n. As for the advancing case, different values of α for the same

n were also investigated, and the results in Figure (8.1.5) suggest that the

initial velocity of the boundary is again decreasing as α increases.

In Figure (8.1.6), two of the cases shown in Figure (8.1.5), were run with

the FORTRAN program, and some interesting behaviour can be seen. For

the smaller α value, the free boundary is seen to retreat initially and then

advance. This suggests that for the other cases, this too is happening only

on a much longer timescale than has been investigated here.
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Figure 8.1.4: Retreating moving front for n = 1.0, alpha = 2.5

Figure 8.1.5: Retreating moving front for n = 1.0, alpha ∈ (2.0, 3.0)
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Figure 8.1.6: Retreating moving front for n = 1.0, alpha =2.2, and n = 1.0,

alpha = 2.8

8.1.3 Waiting Time Behaviour

Due to the limitations on the final time the program can be run to, the results

in Figure (8.1.7) are not conclusive as to the waiting time properties for these

combinations of n and α. The results seem to indicate that the solution is

waiting, but taking the very small timescale over which the program is run,

it could be that the moving boundary is advancing or retreating very slowly.

These cases were run using the FORTRAN code to elicit more information

of their behaviour for longer t. The results can be seen in Figure (8.1.8).

In Figure (8.1.8), the real waiting time behaviour for the given values

of n and α can be seen. They show that the solution waits for a time,

before the moving boundary suddenly starts to advance, as predicted in the

conjectures .

8.2 The Sixth Order Case

For the sixth order case, as previously mentioned, we compare our results to

those in [22]. Only a selection of the results obtained are reproduced here,
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Figure 8.1.7: Apparent waiting time behaviour, for different n and alpha

Figure 8.1.8: Actual waiting time behaviour, for different n and alpha
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and time constraints meant that a comprehensive study of all possible cases

could not be performed. As for the fourth order case, we take initial data

(8.0.1).

The possible behaviours for the cases n = 0.5 to n = 2.5 were considered

in detail. The findings are summarised in Figure

Figure 8.2.1: Table summarising behaviour observed for n ∈ (0.5, 2.5) and

alpha ∈ (0.5, 3.5)

It is clear that the behaviour suggests that a change is occurring for

α ∈ (2, 2, 5). This was investigated further, and our results are presented

for the cases n = 0.5, and n = 2.0, in Figures (8.2.2), and (8.2.3). The

results were run for 500 timetseps with a step size 10−12. The number of

timesteps was limited in order to gauge more information about the initial

movement of the boundary. The figures suggest that upto a certain value

of α, the solution advances instantaneously. Beyond this value, the results

show that the solution starts to retreat initially before advancing. As the

value of α increases beyond this point, the solution retreats for longer before

advancing until, for the length of time the solutions were run, no subsequent

advance can be seen. Investigations carried out as to the particular value

of α for which the solution first starts to retreat, suggests that this value

of alpha decreases as n increases, although for more conclusive results the
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solutions should be computed with more variation of step size, and number

of nodes in the mesh.

Figure 8.2.2: Moving front results for n = 0.5

Following these investigations, further experiments were carried out, this

time looking at large values of n. Solutions obtained in [22] for large n are

characterised by the formation of humps immediately in the vicinity of the

free boundary, and once they have appeared they progress slowly away from

the free boundary. Figures (8.2.4), (8.2.5), and (8.2.6) reproduce the results

obtained on the moving mesh for n = 5, 7, 9, respectively. Figure (8.2.4)

clearly shows the presence in the moving front of these humps, for n = 5, α =

0.1. In both other cases of n, for α = 0.1, these humps are not visible as we

would expect. However, in plots of the profile of the solution, we can see the

humps clearly. This is not the case when α = 0.5, where some small humps
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Figure 8.2.3: Moving front results for n = 2.0
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are present for n = 5, but not for any other values of n. Further experiments

showed that as α was increased the behaviour of the moving front became

smoother until no humps could be seen at all for α > 0.6. While in the

case n = 5.0 solutions matched those on the fixed mesh, for n larger, they

did not. A possible reason for this is the conjecture that for sufficiently

large values of n, the behaviour of the solution is entirely determined by α,

and since the numerical method can never resolve α exactly, with more and

more time steps as the moving mesh repositions nodes at the boundaries, the

approximation to α changes continously. Based on this a further conjecture

was proposed that the numerical scheme may not converge i.e. the problem

itself could be an ill posed one [23].

Figure 8.2.4: Behaviours observed in the case n = 5.0

Interestigly, formation of the humps in the solution profile was also seen
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Figure 8.2.5: Behaviours observed in the case n = 7.0
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Figure 8.2.6: Behaviours observed in the case n = 9.0
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in the cases α = 0.1, and smaller values of n = 1.0, n = 3.0. These results

did not concur with those obtained on the fixed mesh. These results warrant

further investigation as they may well be spurious.

Figure 8.2.7: Humps in the solutions for n = 1.0, and n = 3.0
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Chapter 9

Conclusions and Further

Work

9.1 Summary

In this chapter, the work carried out in this dissertation is summarised. We

then discuss some of the results and findings made, and suggest possible

improvements to this work. We then discuss possible avenues for further

research.

In this dissertation, a moving mesh method based on a conservation of

mass principle has been implemented in order to generate numerical solu-

tions to the fourth and sixth order nonlinear diffusion equations.

In Chapter Two some of the applications of nonlinear diffusion were

considered. In Chapter Three, the principles of velocity based moving mesh

methods were described it terms of generating a mapping from a computa-

tional domain to a physical domain, and then differentiating this mapping

with respect to time, to induce a motion on the mesh. In Chapter Four a

moving mesh method based on a conservation principle was derived, and

a finite element formulation constructed for its solution. Chapter Five dis-

cussed the property of scale invariance in relation to the nonlinear diffusion
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equations, and similarity solutions to the nonlinear diffusion equations were

constructed. In Chapter Six some numerical results to the self similar solu-

tion were presented and matters relating to timestep size and convergence

with increasing nodes were investigated. Chapter Seven described possi-

ble behaviours of the moving boundary of the solution, and discussed the

conjectures surrounding them In Chapter Eight, we applied our numerical

method to the fourth and sixth order conjectures to see whether the moving

mesh method could accurately resolve the features of the moving boundary.

9.2 Remarks and Further Work

Here we look at aspects not fully covered in this dissertation.

9.2.1 Scale Invariance

In Chapter Five, we remarked that figure (5.3.1), suggested that the moving

mesh method possessed the same scale invariance properties as the PDE it

was solving, and that this was a desirable property for the numerical scheme

to have. For the purposes of this dissertation, the very small timesteps used

meant that scale invariance could be assumed. It should be pointed out,

however, that the numerical scheme is not strictly scale invariant. The

ODE for the new node positions,

Ẋ = F (X) (9.2.1)

recovered in Chapter Four, is invariant under the mapping (5.1.3), as is the

Forward Euler discretisation of (9.2.1) given by

XN+1 −XN

tN+1 − tN
= F (XN ) (9.2.2)

However this is not true of the local truncation error ,(LTE), of (9.2.1)

LTE =
XN+1 −XN

tN+1 − tN
− F (XN ) (9.2.3)
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which is not scale invariant under the mapping described in equation ().

In [6], a timestepping method with a scale invariant LTE is outlined, by

introducing a new variable, σ = tβ , and transforming (9.2.1), under this

gives a scale invarint time-stepping scheme

Xn+1 = Xn + β−1((tn+1)β − (tn)β)t1−βn F (Xn) (9.2.4)

Future work could look at implementing this timestepping scheme, in

order to make the numerical scheme truly invariant.

9.2.2 Timestepping

When considering the size of the timesteps used, it was seen in Chapter

Seven, that the timestep associated with the moving mesh, was propor-

tional to the spatial mesh size. A larger number of nodes required a smaller

timestep in order to avoid node overtaking. In regions where the solution of

the underlying PDE has steep solution gradients, it would be expected that

the moving mesh method would generate smaller mesh sizes in space. A

possible avenue for further work could be to implement some form of locally

adaptive timestepping in these regions.

Another possibility is to consider the implementation of a different timestep-

ping scheme, for example a Runge-Kutta, or Backward Differentiation scheme,

both of which possess better stability intervals than the Forward Euler

Scheme. This may allow larger timesteps to be taken.

9.2.3 Errors

The results obtained in this dissertation, have been evaluated only on a

qualitative basis. It is important to point out that owing to time constraints,

no error measures were calulated for the self-similar results obtained, so

strictly speaking the accuracy of the solutions presented here cannot be

guaranteed. However, the same moving mesh method was implemented in
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[5], and investigations of the solution error in the L1 norm were carried

out. In the case of the Fourth Order Diffusion Problem, these illustrated a

fourth order accuracy in one dimension, using a uniform initial mesh, with

diffusion coefficient n = 1. It would be appropriate to consider investigating

the accuracy of the solution for the Sixth Order Problem in a similar manner.

9.2.4 Initial Grid Distribution

For the purposes of this dissertation, a uniform initial distribution of the

nodes was used, where the distance between each of the nodes in the mesh

was equal.

We could investigate how the solution varies, if at all, with the ini-

tial mesh used. For example, the equidistribution algorithm outlined by

Baines [4], could be used, to start with an initial mesh in which the nodes

are placed so the mass is equal in each cell.

It was remarked in Chapter Six, that the use of mass as a monitor

function, resulted in the nodes following the moving boundary, but did not

necessarily seem to increase the distribution of nodes to these areas. To

remedy this, we could start with an initial mesh, in which the nodes were

more clustered around the boundary, for example, by requiring that smaller

amounts of mass are placed in this region. An extension to the method

used in this dissertation, is then to investigate the moving front, in the sixth

order case, where, as noted in Chapter Eight, worsening resolution at the

boundaries for increasing values of the diffusion coefficent could mean that

the numerical schemes do not converge for these situations. If we start with

an initial mesh with improved resolution of the moving front, this could

result in improved resolution of the contact angle α, and may improve the

solutions obtained in Chapter Eight.
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9.2.5 Extension to Further Applications

Further work could consider the application of this moving mesh method

to problems in two dimensions, in order to better apply them to examples

considered in Chapter two. One such possibilty would be to consider the

problem of oxygen diffusion in tumour growth, and apply the method con-

sidered here to a two dimensional radial proble, which would better model

the distribution of a tumour.
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