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Abstract 
 

The examination of radio waves propagating, interacting and reflecting off 

various bodies and materials is of interest in many areas of research, including 

assessing radio communications through the ionosphere, determining effects on 

soft tissue from mobile phone use and producing radar cross section estimates 

for military purposes. Analytical solutions exist for only the simplest of geometries 

where Maxwell’s equation can be solved, so to fulfil all of these diverse 

requirements numerical techniques have been developed, and one such method 

is the Finite Difference Time Domain (FDTD) approach.  This report examines 

the use of FDTD to model a finite radar pulse on plasma and plasma coated 

objects, in particular its ability to model the effect of non-time harmonic radar 

waves. These ‘chirped’ waves vary in wavelength through the pulse and are 

utilised by a radar system to negate against countermeasures (such as ‘chaff’) 

and to increase the effective power of the pulse. An examination into the number 

of sampling points of the chirped wave required to produce numerical solutions 

consistent with electromagnetic theory is presented, along with recommendations 

for further research. 
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1. Introduction 
 
The generation of radio waves for the purpose of detecting objects at a distance 

from an observation point, known as Radio Detection and Ranging (RADAR), has 

been utilised since the early 20th century for both civilian and military purposes. In 

particular radar has been utilised for detection of aircraft, missiles and other 

complexly shaped objects. These objects are characterised by a Radar Cross 

Section (RCS) and a radar signature, determining the overall magnitude of the 

radar pulses reflected from the object and the variation of this return respectively. 

The detection range (i.e. the maximum range from a radar dish that an object can 

be detected) of a particular radar/target pair is determined by the relative 

magnitude of the returned radar pulse (the ‘signal’) compared to the ambient 

background radiation around the radar (the ‘noise’); given by the Signal to Noise 

Ratio (SNR). The radar equation (see [5]) shows that SNR is proportional to the 

RCS of an object and as such is a key parameter in determining the ability of 

radar to detect the object. 

 

It has been known from the early invention of radio/radar that the propagation of 

electromagnetic waves can be affected by the medium which they propagate 

through. In particular the early experiments using radio waves by Marconi 

observed that rather than propagate through the Earth’s atmosphere into space, 

radio waves were reflected back towards the Earth. This effect is due to the 

presence of the ionosphere in the upper atmosphere, which consists of cold, 

ionised plasma and has an electrical permittivity such that it causes radio wave 

reflection. As such the effect of plasma on RCS and propagation of radio waves 

through the ionosphere has been of interest to several areas of research, from 

radar engineers to the designers of communications systems which utilise radio 

waves to exchange data with satellites above the ionosphere. 

 

A large amount of work has been performed in the analytical and numerical 

derivation of RCS and radar signatures of various objects, in particular for military 

purposes. A comprehensive investigation of analytical RCS values for numerous 
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basic geometrical shapes is presented in the Radar Cross Section Handbook by 

Ruck [4]. This also includes methods for obtaining the RCS of complex objects 

made from superimposing a number of simple shapes together. Additionally 

analytical solutions for the RCS of non-perfectly conducting materials are 

discussed, with reference to plasmas and the analytical solution of plasma 

spheres given by Mie [10]. The book by K. S. Kunz and R. J. Luebbers [1] 

provides a detailed background in the formulation of numerical methods used to 

predict RCS and radar signatures of various objects, in particular utilising Finite 

Difference Time Domain (FDTD). Primarily the examples given for numerically 

determining the RCS (for example of an F-111 at 5 – 50 MHz with a comparison 

to measured data) examine the scattered electric field, Es, derived from a uniform 

time-harmonic incident field, Ei, across the domain (where the total electric field, 

Et is given as the sum of the incident and scattered field, Et = Ei + Es). The 

examples in [1, 9] utilise this time-harmonic wave approach to produce numerical 

solutions for the scattered electric fields, which allow RCS values to be 

determined. In this report the particular case that will be considered is that of the 

total electric field solution for a non-time harmonic radar pulse incident on a 

plasma/dielectric. 

 

In recent years, as computing power has increased significantly, a large amount 

of work and research has been focussed on the extension and modification of 

FDTD for RCS determination, many of these papers are found in the Institute of 

Electrical and Electronics Engineers (IEEE) journals, for instance references [6 - 

9]. In the paper by Shalager et al. [6] a number of alternative approaches to the 

central difference FDTD originally proposed by Yee are compared, with the 

alternative methods being of higher orders compared to the second order space 

and time nature of the Yee FDTD scheme. In this report the FDTD approach 

detailed in [1] is used as this method is well documented in terms of its 

applicability to the problem of electromagnetic wave propagation. 
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Research into plasma and its interaction with electromagnetic waves has been 

ongoing for almost as long as the use of FDTD. The added difficulty when trying 

to consider real rather than theoretical perfect plasmas is the need to determine 

the accurate Total Electron Content (TEC) within a region and how it evolves with 

time. Reference [2] gives some detailed background theory on plasma behaviour. 

Due to the need of additional numerical (usually Monte-Carlo, Computational 

Fluid Dynamics (CFD)) computer codes to determine the plasma behaviour, a 

computer code to determine the RCS of a plasma object is usually de-coupled 

from the code that will generate the TEC evolution within the region of interest. 

 

From the literature examined in the course of this work, it is apparent that the 

determination of RCS values for a number of objects is well practised and 

documented. This has utilised FDTD (in various forms) to examine RCS values at 

a range of frequencies using time harmonic incident radio waves modelled in the 

computational domain. The aim of this project is to examine the use of non-time 

harmonic waves (utilised by a large number of modern, pulse compression radar 

systems in the form of a ‘chirp’ pair) to interrogate objects shielded by plasma. In 

particular, the effect of space steps on the error of the solution in modelling a 

chirped pulse is examined.  

 

The remainder of this report is structured as follows: - 

 

Section 2 discusses some general electromagnetic theory, in particular the 

Maxwell equations which govern the propagation of radio waves through a 

medium. 

 

Section 3 investigates analytical solutions of electromagnetic waves travelling in 

free space, incident on a Perfectly Electrical Conducting (PEC) surface and 

obliquely incident on a dielectric medium.  
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Section 4 formulates the general form of the finite difference equations that are 

used to produce the numerical solutions for the free space, dielectric and plasma 

radio wave propagation problems. In this section there are also details of the 

computational domain (including boundary conditions) and the incident wave that 

will interrogate the object. 

 

Section 5 describes the nature of plasmas and characterises these regions in 

terms of their electromagnetic properties. 

 

Section 6 compares the numerical results with analytical solutions for waves in 

free space and incident on a dielectric surface as detailed in section 3. 

 

Section 7 describes the examination of the effect of plasma on a non-time 

harmonic electromagnetic wave incident on an object, the most significant 

problem considered here. A comparison of these results with those expected 

from electromagnetic/plasma theory is presented. 

 

Section 8 provides a summary of the work covered in this report and presents 

areas for future research. 
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2. Electromagnetic Theory 
 
The propagation of electromagnetic waves is governed by four Maxwell 

equations. These describe the relations between the electric (E) and magnetic 

(H) fields and are applicable to electromagnetic wave propagation in both free 

space and in various media. 

Consider a three dimensional problem in which an electromagnetic wave is 

propagating through free space. Using Cartesian co-ordinates, the electric and 

magnetic fields can be thought as having individual components in the x, y and z 

directions. At any single point in the three dimensional domain of the problem, six 

quantities can be specified, Ex, Ey, Ez, Hx, Hy and Hz, which will describe the total 

electric and magnetic field in the domain. Here, the subscript denotes which 

Cartesian direction the component of the electric/magnetic field relates to, and it 

is noted that these six parameters are scalars. We specify the unit vectors, i, j 

and k, along the x, y and z Cartesian axes respectively, which allows a vector of 

each electric and magnetic field to be constructed.  

 

A schematic of the individual electric and magnetic field vector components (at 

arbitrary points in the domain) is shown in Figure 1. 

 

x 

y 

z 

O 

Ey j

Ex i

Ez k

Hy j

Hx i

Hz k

i 
j 

k 

 
Figure 1: Electric and magnetic fields in Cartesian co-ordinate system 
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Given these individual electric and magnetic fields, the total field at a point, r, in 

the domain is constructed by the superposition of these components: - 

 
( )
( ) kHjHiHrH

kEjEiErE

zyx

zyx

++=

++=  (1) 
 
. (2) 
 

For this project Cartesian co-ordinates will be used throughout.  

 

The four Maxwell equations in Cartesian co-ordinates and differential form are 

shown in equations (3) to (6): - 

 

ε
ρ

=⋅∇ E , (3) 

 
0=⋅∇ B , (4) 

 

t
BE

∂
∂−

=×∇ , (5) 

 

t
EJB
∂
∂

+=×∇ μεμ , (6) 

 
where,  

J = σE is the displacement current (Am-2). 

B = μH is the magnetic field density (Wm-2). 

E is the electric field (Vm-1). 

H is the magnetic field (Am-1). 

ε is the electric permittivity (Fm-1) and is expressed in terms of the relative 

permittivity εr, compared to free space, ε0, ε = εrε0. 

μ is the magnetic permeability (Hm-1). 

ρ represents the charge density (electrons per m3).  

σ is the conductivity of the medium (Ω-1m-1). 
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Equations (3) and (4) are contained within (5) and (6), which can be shown by 

considering the divergence of each. Firstly, we take the divergence of equation 

(5): - 

 

t
BE

∂
∂−

⋅∇=×∇⋅∇ . (7) 

 
The divergence of a curl of a vector field is zero; this is shown in Appendix A, 

Lemma 1, so we use the identity: - 

 
0=×∇⋅∇ E , (8) 

 
Therefore, returning to (7) we see that we have: - 

 

B
t

⋅∇
∂
∂

−=0
 
. (9) 
 

 
This implies that the divergence of the magnetic field B is constant with time. 

Without loss of generality we set B to be zero at t = 0, and hence this implies that 

the divergence of B is zero at all times. 

 

Similarly, taking the divergence of (6) and again using Appendix A, Lemma 1: - 

 
 

( )

( ) JE
t

E
t

J

t
EJB

⋅−∇=⋅∇
∂
∂

⇒

⋅∇
∂
∂

+⋅∇=⇒

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅∇+⋅∇=×∇⋅∇

ε

ε

μεμ

0

,  (10) 
 
 
 
, (11) 
 
 
. (12) 
 

Now, we use the continuity equation (from standard electromagnetic theory, see 

[3]), which describes the displacement current, J, in terms of the change in 

electron density, ρ:- 
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t
J

∂
∂

−=⋅∇
ρ

, (13) 

 
which when substituted into (12) gives: - 
 

 
, (14) 
 
 
 
, (15) 

 

( ) ( )

CE

t
E

t

+=⋅∇⇒

∂
∂

=⋅∇
∂
∂

ε
ρ

ρε

and we can set the constant to be zero at zero time without loss of generality, 

which gives Maxwell’s equation as expressed in equation (3). 

 
2.1. Poynting Vector 
 
The Poynting vector, denoted by the vector S, describes the direction of energy 

flow of an electromagnetic wave. In simplistic terms, this gives the direction of 

propagation of the electromagnetic wave, and is given mathematically by [3]: - 

 
 
 
 
, (16) 
 
 
 

( ) ( ) ( )xyyxxzzxyzzy

zyx

zyx

HEHEkHEHEjHEHEi

HHH
EEE
kji

HES

−+−−−=

=×=

 
this identity can be used to investigate the direction of propagation of the initial 

wave and of the scattered fields from the numerical solution. 
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3. Analytical Solutions 
 
3.1. Free Space Behaviour 
 
For all the problems being modelled in this project, a radar pulse will initially 

travel in free space (that is a region which has no free electric currents and a 

permittivity equal to that of free space permittivity, which can therefore be 

described as lossless) towards a target, and the scattered field from the target 

will propagate away in free space. Therefore it is necessary to categorise the 

incident radar pulse in terms of electric and magnetic field distributions at zero 

time. The mathematical formulation of this can be found by considering Maxwell’s 

equations (5) and (6) in free space, i.e. where ρ = 0, ε = ε0, μ = μ0, σ = 0 and 

hence J = 0: - 

 

t
HE

∂
∂−

=×∇ 0μ , (17) 

 t
EH
∂
∂

=×∇ 0ε . (18) 

 
We can now apply the curl operator to both of these expressions: - 
 

 
, (19) 
 
 
 
. (20) 
 

( )

( ) ( )H
t

EE

t
HE

×∇
∂
∂−

=∇−⋅∇∇⇒

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂−

×∇=×∇×∇

0
2

0

μ

μ

 
Here, we have used the expression for curl of the curl of a vector field, which is 

found in Appendix A, Lemma 2. Now using the expression for curl H from (18), 

and for divergence of E from (3): - 

 

2

2

00
2

00
2

0

t
EE

t
E

t
E

∂
∂

=∇⇒

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂−

=∇−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⇒

εμ

εμ
ε
ρ  

, (21) 
 
 
, (22) 
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since the free space charge density, ρ, is zero as mentioned above. The 

equation (22) is of the form of a generic equation for a wave. Similarly it can be 

derived that for the magnetic field: - 

 

2

2

00
2

t
HH

∂
∂

=∇ εμ . (23) 

 
So both the electric fields and magnetic fields will act as waves when travelling in 

free space, with the phase velocity, c, given by (μ0ε0)-½. 

 

A radar system such as a phased array radar (see [5] for details) produces plane 

waves, that is the electric and magnetic fields are constant within a plane at an 

instant in time. In the case of a phased array radar, a number of dipoles are 

arranged within the face which can produce an electric field between them 

varying with time. These are excited by an electrical signal which is sinusoidal in 

nature, thus alternating the electric field between the dipoles in the same manner. 

As the electric fields alternate they are radiated out into space, producing a 

sinusoidal wave in both electric and associated magnetic field. 

 

Without loss of generality, the equation of a plane wave can be expressed as in 

(24), where z corresponds to the z axis as defined in Figure 1: - 

 
([ kztiEE −= )]ωexp0 , (24) 

 
the imaginary part of Eo contains information on the initial phase of the wave. 

Taking the real part of this expression gives: - 

 
( kztEE −+= )ωκcos0 , (25) 

 
where κ is the phase of the wave. In expressions (24) and (25), k denotes the 

wavenumber of the plane wave (=2π/λ), ωt gives the temporal evolution of the 

wave, where ω represents the frequency of the wave (in radians per second), 
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and t is the time in seconds. From standard wave theory, c=fλ, where f is the 

frequency and λ is the wavelength of the electromagnetic wave. 

 
The associated magnetic field is given by: - 

 
( kztHH −+= )ωκcos0 , (26) 

 
i.e. the magnetic fields are in phase with the electric fields, and have the same 

wavenumber (and therefore the same wavelength and frequency). Figure 2 

shows the arrangement of electric and magnetic fields in the plane wave. 

Magnetic 
field, H 

Direction of travel, 
S (Poynting vector)

Electric 
field, E 

 
Figure 2: Electric and magnetic fields in incident radar wave. Note that the 
magnetic field is in the H-S plane and the electric field is in the E-S plane 
 
The phase velocity, vp, of the plane wave can be determined from the 

wavenumber and frequency of the wave [3]: - 

 

cf
k

vp =≡=
λ

ω . (27) 

 
Therefore a electromagnetic plane wave in free space will propagate in straight 

lines at a speed that is equivalent to the speed of light in free space, c, which has 

the value [3]: - 

 
1810299792458 −×= msc . 
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3.2. Plane Wave Incident on a PEC Plane 

s 

mplitude of the 

cident wave. Explicitly, PEC can be characterized as follows: - 

lectrical Permittivity,

 

When examining the scattering of an electromagnetic wave off a solid object, it i

often assumed that the target being interrogated is made of Perfectly Electrical 

Conductor (PEC). Essentially this means that the target comprises of a material 

that is close to a perfect conductor, such that electromagnetic waves incident on 

the target are reflected away with no appreciable degradation in a

in

 
E  ∞→rε . 

um 

equencies incident upon them, and as such may be approximated by PEC. 

.3 Plane Wave Obliquely Incident on a Dielectric Surface 

 order 

n. 

fields, t 

enotes the transmitted wave and r denotes the reflected wave: - 

 

 

Many metals commonly used in the construction of airframes, such as alumini

and titanium, have extremely high electrical permittivities for a large range of 

fr

 
3
 

We consider an electromagnetic plane wave incident on a dielectric material at 

an angle ςi to the normal of the surface. The effect of having a dielectric material 

rather than a PEC surface is that the its electrical permittivity is of a similar

of magnitude compared to the permittivity of free space, ε0, with a relative 

permittivity, εr, greater than one. Figure 3 shows this arrangement, where we 

have the electric field, Ex, perpendicular to the surface that it is incident upo

The superscript i denotes the incident wave electric and magnetic 

d
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ςr

ςi

ςt

ε0 ε=εr ε0

i
xE

t
xE

r
xE

rH

z 

y x iH

tH

 
 
Figure 3: Plane wave obliquely incident on a dielectric 
 
Standard theory from electromagnetics [3] is used to solve this situation to give 

expressions for the magnitude of the transmitted and reflected electric field 

component of the electromagnetic wave and the direction of travel relative to the 

normal of the material (ςt). These are known as the perpendicular Fresnel 

equations ((28) and (29)) and Snell’s laws ((30) and (31)) respectively [3]: - 

 
 
, (28) 
 
 
, (29) 
 
 

( ) ( )
( ) ( )

( )
( ) ( ) 11

1

11

11

coscos

cos2

coscos

coscos

−−

−

−−

−−

+
=

+

−
=

itr

tri
x

t
x

itr

itri
x

r
x

EE

EE

ςςε

ςε

ςςε

ςςε

 
, (30) 

r

i
t

ri

ε
ς

ς

ςς
sin

sin =

=
 
. (31) 
 

 
For a homogenous medium, defined by the relative permittivity εr, we can also 

get an expression for the change in wavelength that will be associated with this 

transition from free space to the medium. If the incident wave is characterized by 

  13 
  



 

wave number ki = 2π/λi, and the transmitted wave by kt = 2π/λt (λi and λt are the 

wavelengths of the incident and transmitted waves respectively), then: - 

 
 

r

i
t

ri
t

i
it kkk

ε
λλ

ε
ς
ς

=⇒

==
sin
sin

, (32) 
 
 
. (33) 
 

 
In moving from free space to a dielectric medium, (with εr>1 by definition), we see 

that there will be a reduction in wavelength of the incident wave. 
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4. Finite Difference Formulation 
 
Finite differences are commonly used in numerical methods to approximate 

differentials in terms of gradients calculated from closely spaced points on the 

function. Generally for first order partial differential we use the approximation: - 

 

( )
x

xafxaf

x
af

Δ

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+
≈

∂
∂ 22 . (34) 

 

To use finite differences for electromagnetics, consider the Maxwell equation (3) 

which gives a temporal variation of electric field, E, in terms of a spatial variation 

of magnetic field, H. We can use the definition of the curl operator to give 

expressions for the rate of change of the electric field in the x, y and z 

components: - 

E
HHH

kji

t
E

EH
t
E

zyx

zyx σε

σε

−=
∂
∂

⇒

−×∇=
∂
∂

∂
∂

∂
∂

∂
∂

 
 
, (35) 
 

 
 

 
. (36) 
 

 
 
 
By equating terms in the same unit vector directions, i, j and k, we produce three 

equations representing the x, y and z components of the electric field: - 

 
 
, (37) 
 
 
 
, (38) 
 
 
 
. (39) 
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We can also use this method to produce equations for the magnetic field in the x, 

y and z components.  

H
EEE

kji

t
H

zyx

zyx
*σμ −=

∂
∂−

∂
∂

∂
∂

∂
∂

, (40) 

 
Here, we have modified equation (3) to include a magnetic loss term (σ*H terms, 

where σ* is the magnetic conductivity), which is analogous to the electric loss 

term represented by σE in equation (36). These terms allow the possibility of the 

region in which the electromagnetic waves propagate to induce a magnetic loss. 

Equating terms in the i, j and k directions we obtain equations (41) to (43): - 

 
 

z
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x
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−

∂
∂

=
∂
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, (41) 
 
 
 
, (42) 
 
 
 
. (43) 
 
 

 
In this project we will only be considered lossy dielectric materials, and therefore 

we shall discount the magnetic conductivity terms.  

 
4.1. Yee Grid 
 
The Yee grid was proposed in Yee’s paper of 1966 [13] and allows a problem 

featuring electromagnetics to be modelled using a finite differences approach. 

The grid has interleaved electric and magnetic fields along with points that are 

null (having no electric or magnetic field). Firstly the computational domain, a grid 

of size LxLyLz, is discretised in the x, y and z directions, with rectangular cells of 
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size ΔxΔyΔz, where Δx, Δy and Δz are the grid spacings in the x, y and z 

directions respectively. The grid points within the domain are represented by the 

vectors r, whose position is represented by the indices (m, p, q): - 

 
( ) ( ) ( )kzqjypixmr Δ+Δ+Δ= , (44)  

  
where, 
 

QqPpMm ,....,2,1,....,2,1,....,2,1 ===  
 
and, 

 
 

Q
Lz

P
L

y
M
L

x zyx =Δ=Δ=Δ  
 

 
A schematic of the computational grid is shown in Figure 4: - 

y 

x 

z 
Ly

Lz

Lx

m=1 
m=2 

m=M 

p=1 p=2 p=P 
q=1 

q=2 

q=Q 

 
 
Figure 4: Computational domain 
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The electric fields and magnetic fields are both represented on a grid with 

spacings Δx, Δy and Δz. Each Yee cell has face centred electric/magnetic fields 

as shown in Figure 5: - 

 

y 

x 

z 

Ez

Ez

EyEy

Ex

Ex

 
Figure 5: Yee Grid cell for electric fields 
 
However, the magnetic field grid is displaced by a distance: - 
 

kzjyix
222
Δ

+
Δ

+
Δ , (45) 

 
from the electric field grid. A representation of the Yee grid is shown below in 

Figure 6: - 
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E fields 
 
Ex
Ey
Ez

H fields 
 
Hx
Hy
Hz
 

Z=1

Z=2

x

y z 

 
 
 
Figure 6: Yee Grid arrangement of electric and magnetic fields 
 
It can be seen from this figure that electric fields circulate around a perpendicular 

magnetic field and vice-versa. Therefore this grid design complies with Maxwell’s 

equations on a fundamental level, as this effect is observed physically. 

 

4.2. Finite Difference Time Domain (FDTD) 
 
To model electromagnetic wave propagation on a computer we must discretise 

the computational region (defined in section 4.1.) and to do this we use central 
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differences to approximate the six equations (37) to (39) and (41) to (43) which 

describe electromagnetic propagation in 3 dimensions: - 
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The n+1/2 timesteps seen in these equations allude to the ‘leap-frog’ approach of 

the FDTD method. This problem is an example of an Initial Value Problem and 

hence we assign an electric/magnetic field distribution within the computational 

grid, then progress time forward to see the evolution of the individual fields within 

the domain, so that a scattered field can be found. The initial electric fields are 

set up to represent a radar pulse as described in section 4.4., these represent the 

initial n=0 E-fields, and n=1/2 H-fields. On the first loop of the code, the electric 
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fields within the bulk of the computational domain are calculated, using explicit 

expressions for the n=1 E-fields (52) to (54) based on the n=1/2 H-fields. After all 

these have been determined, the magnetic fields within the bulk of the domain 

are determined for the n=3/2 time step using the newly calculated n=1 E-fields 

(equations (55) to (57)). This process is repeated at each time step to get from 

the n to n+1, producing a leap-frog method in which E-fields are determined 

using the n+1/2 H-fields, and the H-fields from the n E-fields; as described by 

equations (52) to (57). 
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4.3. Boundary Conditions 
 
The FDTD equations (52) to (57) are such that each of the explicit 

electric/magnetic field equations require values for the magnetic/electric field 

around (spatially) the point being considered. As such, the arrangement of the 

Yee cells within the computational grid will result in a ‘missing’ electric/magnetic 

field at the edge of the computational domain, as demonstrated in Figure 7, 

representing the y = 0 plane: - 

 

x 

y 

(m-1)Δx mΔx (m+1)Δx

-Δy 

0 

Δy 

Computational 
domain HzEy Ey

Ex

Ex

 
Figure 7: Schematic of edge of computational domain 
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In this case it can be seen that the y=-Δy value is unavailable (i.e. not in the 

domain and hence not assigned a value) for the FDTD calculation. To negate this 

effect, we use the Mur boundary condition. 

 
4.3.1. Mur Boundary Conditions 
 
At the edge of the computational grid, the Mur boundary condition [11] uses the 

previous values on the boundary and interior values of the electric/magnetic 

fields to determine the grid point values at the boundary. Essentially this uses the 

assumption that the electromagnetic wave incident on the boundary continues to 

propagate out of the region at the speed of light, c. Explicitly the first order Mur 

approximations for the boundaries of the computational domain are given by 

equations (58) to (69): - 
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4.4. Incident Wave 
 
To determine the backscatter of an incident electromagnetic wave on the object, 

an incident region of electric and magnetic fields is generated which will travel 

towards the object to be interrogated through the Yee grid.  

 
Figure 8 shows the arrangement in terms of the incident wave direction: - 
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Figure 8: Arrangement of incident wave relative to computational grid 
 

The incident wave will be varied such that it approaches the object from various 

angles relative to the z-direction in the grid, denoted by θ. This will allow the 

back-scattered radiation from different aspect angles to be determined, i.e. to 

give an electric field profile against aspect (viewing) angle. The incident wave will 

also be rotated about the z-axis, denoted by φ, such that the effect of the Yee 

grid, i.e. of using a series of cubes to represent a smooth object, can be negated 

by averaging over these viewing angles. We introduce three Euler angles: - 

 

ψ – a rotation of the incident beam electric and magnetic fields in the x-y plane, 

θ – a rotation of the incident beam direction in the y-z plane, 

φ – a rotation of the incident beam direction in the x-y plane. 

 

As finite differences are being used in this simulation, discontinuities in electric 

and/or magnetic fields will tend to produce spurious results and as such a wave 

that is ‘square’ (finite in size with zero values on its boundary) will propagate in 

several directions and be incoherent after a few time steps. 

  25 
  



 

In this problem the incident wave is chosen to be a cylindrical wave, which is 

Gaussian in a radial direction and spatially along the initial wave. A schematic of 

this is shown in Figure 9: - 
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Figure 9: Schematic of incident radar pulse, showing radial and spatial amplitudes 
 
This arrangement for the incident wave is intended to reduce the spurious 

behaviour at the edge of the wave packet. The amplitude factors, α (along 

direction of travel) and β (radial from centre of packet) are given by: - 
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The factor of 16 gives a value of 1.1 x10-7 at the edge of the pulse, which is 

believed to be sufficient to truncate the pulse region. 
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The parameters R and d are determined by considering a unit vector, u, which 

describes the Poynting vector (see section 2.1.) and specifies the desired 

direction of propagation of the incident wave, given in spherical coordinates by: - 
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where φ and θ are the angles shown in Figure 8. For any point in the Yee grid, r, 

the dot product with this unit vector allows us to determine the distance of the 

point in terms of a parallel and normal component to the u vector. This then 

allows the radial and spatial amplitude factors to be determined and applied to 

the peak amplitudes. 

 

The incident wave will be polarised (in electric field) at an angle, ψ, relative to the 

z-axis. We arbitrarily take the incident electric field to be defined by the peak 

amplitude in the y electric field component, given by E0. To produce expressions 

for the incident wave at any direction relative to the grid, we use a rotation matrix 

to denote the three transformations from this initial electric field: - 
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As the subsequent numerical analysis will be based on the amplitude of the 

electric field back-scattered compared to the incident electric field amplitude, we 

defined the initial electric field amplitude, E0, and determine the initial magnitude 

of the magnetic field, H0, by equation (76) [3]: - 
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where, 
0

0

ε
μ

ν = , (77)  

gives the free space impedance. Combining this information with the 

transformation defined in (75) we can derive the six initial wave amplitudes in the 

x, y and z component directions: - 
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The approximation we will use in the formulation of the incident electric field wave 

can be explicitly described as: - 
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where ( ) ( ) ( zqkypjxmir )Δ+Δ+Δ= . (80) 

 
The spatial components of the wave in the initial conditions of the problem are 

given by (81) and (82), and are derived from the analytical solution of a plane 

wave travelling in free space (see section 3.1.): - 
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where ( ) ( ) ( )( ) 2
1222 zqypxmr Δ+Δ+Δ= . (83) 

 
As the FDTD is a leapfrog approach, consideration must be given to the initial 

conditions to represent this process, in this case we require the initial incident 

wave to represent the analytical plane wave solution for the electric field at time 

n=0, and the magnetic field at time n=1/2. Here, the magnetic field is negative so 
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that the correct Poynting vector is obtained such that the initial wave propagates 

from the outside of the Yee grid towards the object.  

 

When expressions (75), (81) and (82) are combined, the initial electric and 

magnetic fields are specified by: - 

 

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−⎟
⎠
⎞

⎜
⎝
⎛ Δ

+−=

⎟
⎠
⎞

⎜
⎝
⎛−=

⎟
⎠
⎞

⎜
⎝
⎛+−=

⎟
⎠
⎞

⎜
⎝
⎛+=

=

=

=

=

=

=

2
2cossinsin

2

2
2coscoscossinsincos

2

2
2cossincossincoscos

2

2cossincos

2coscoscoscossinsin

2cossincoscoscossin

02
1

02
1

02
1

0
0

0

0

0
0

tcrdrtcrdEH

tcrdrtcrdEH

tcrdrtcrdEH

rdrrdEE

rdrrdEE

rdrrdEE

n

rz

n

ry

n

rx

n

rz

n

ry

n

rx

λ
πθψβα

ν

λ
πϕθψϕψβα

ν

λ
πϕθψϕψβα

ν

λ
πθψβα

λ
πϕθψϕψβα

λ
πϕθψϕψβα

 
(84) 
 
(85) 
 

(86) 
 
 
(87) 
 
 
(88) 
 
 
(89) 
 

 
Here, d(r) denotes the distance of the point r along the direction of travel from the 

origin of the wave, α(d(r)) and β(r) represent the parallel and orthogonal 

amplitude factors respectively at the point r. 

 
4.5. Non-time Harmonic Electromagnetic Wave 
 
A radar system may vary the rate of change of electric field generation from its 

radiating elements as it emits radiation. Consequently this varies the wavelength 

of the radio waves emitted from the radar, and as such a single pulse may have 

numerous sections of non equal wavelengths throughout its pulse. In particular, a 

typical radar technique known as ‘chirping’ (see [5] for details) increases or 

decreases the wavelength of the generated radio waves linearly with time. A 

description of the radar processing of a received chirped pulse is available in 
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[14]. This is known as up chirping (decreasing λ with time) and down chirping 

(increasing λ with time). A schematic of these processes is shown in Figure 10: -  

 

d 

E 

d 

λ 

 
Figure 10: Schematic of a down chirp radio wave 
 
Given that the wavelength of the radio wave through the pulse can be expressed 

as: - 

 
( ) dd λλλ ′+= 0 , (90) 

 
where: - 

 
( )

=′
=
=

λ
λ
λ

0

d Wavelength at distance d along pulse, 
 

Wavelength at front of pulse (d=0), 
 

Rate of change of wavelength with distance (positive or negative). 
 

We can therefore modify equation (84) to include a chirp: - 
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0
0

0 2cossincoscoscossin , (91) 

 
and similarly equations (84) to (89) can be modified to include the chirp term. 

This formulation for the initial electric and magnetic fields will be used for the 

analysis in section 7. 

 

  30 
  



 

4.6. Truncation Error 
 
Truncation error is the error introduced into the numerical solution caused by the 

approximation of using the scheme (in this case the FDTD method) instead of the 

analytical formula. In this case the truncation error, , is expressed 

mathematically by: - 

n
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Theorem 
 
The leading term of the truncation error is given by: - 
 

...
242424

2
1

,,3

32
2
1

,,3

32
2
1

,,3

32
2
1

,, +⎟
⎠
⎞

⎜
⎝
⎛

∂
∂Δ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂Δ

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂Δ

= ++++ n

qpmz

n

qpmy
n

qpmx

n

qpm E
y

yE
z

zH
t

tμτ . (96) 

 
The truncation error is second order in both space and time and hence the 

scheme is consistent, i.e. the numerical solution will tend to the exact (analytical) 

solution as the temporal timesteps and spatial grid spacing tend to zero.  

 
Proof 
 
We expand Hx, Ey and Ez from equation (93) about the point ((n+1/2)Δt, mΔx, 
pΔy, qΔz): - 
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With the original PDE we can remove the first three zeroth order terms, and the 

result follows. 

 ■ 
A similar analysis to this can be performed on all six FDTD equations used in the 

scheme, and by inspection we can see that we will obtain the same conclusion, 

i.e. second order in space and time, from each expression (46) – (51). 
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4.7. Stability 
 
The stability condition of the FDTD is given by the Courant condition, which 

determines the maximum time step to be used given a known grid spacing [1]: - 
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In the subsequent analysis, we use the expression below for the time step: - 

 
2

1

222
1 1119.0

−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+
Δ

+
Δ

=Δ
zyx

ct , (102) 

 
and as we will be using the same grid spacing in each axis (Δx = Δy = Δz), this 

reduces down to: - 

3
9.0 1 yct Δ

=Δ − , (103) 

 
where we have chosen to define the three grid spacings in terms of the grid 

spacing along the y-axis. 

 
4.8. Choice of Grid Spacing 
 
When modelling a wave in a finite difference code, it is often suggested that a 

suitable approximation to a sine wave consists of at least 10 numerical points 

along a full wavelength [1], as shown in Figure 11: - 

 

  33 
  



 

 
Figure 11: Suggested numerical sampling of incident wave 
 
So to model a plane wave (wavelength λ) travelling in the y direction in free 

space through the domain modelled, we could choose Δy to be equal to λ/10. 

However, as well as travelling through free space we also want to consider the 

propagation and associated backscatter from dielectric lossy materials, which 

have a relative permittivity which will produce a change in the wavelength of the 

electromagnetic wave. The change in wavelength is given by equation (33). 

Therefore we assign the grid spacing based on the permittivities found within our 

computational domain, D: - 
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This condition is used to determine the minimum grid spacing when modelling 

harmonic waves within the FDTD code. An investigation into the use of this 

condition for non-time harmonic waves is presented in section 7. 

 

When considering radar, we often describe the frequency of the radio wave from 

the radar in terms of its ‘band’, which cover a range of frequencies. In this project 

we will be considering VHF to X-band, which covers the frequency range 200 

MHz to 3 GHz. So the grid spacing used will be in the order of centimetres (10-2 

m) and hence the time steps will be of the order of tens of picoseconds (10-12 s). 
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5. Plasma Theory 
 
The term plasma refers to a gas which has been excited by some method such 

that there is a dissociation of electrons from atoms and/or molecules such that 

charged (positive and negative) and neutral ions exist. The distinguishing feature 

between plasma and an ordinary ionised gas is that plasma experiences 

collective behaviour, explicitly this is due to the alternating electric fields 

generated in the plasma which affect the particles in the plasma locally but also 

affect charged particles at a distance [2]. 

Plasmas may be generated naturally by objects passing rapidly through the 

Earth’s atmosphere (meteorites, de-orbiting satellites) and by incident solar 

radiation acting upon the ionosphere. Plasmas may be generated artificially by 

the use of an electron gun. 

 
There are several categories of plasma that have different characteristics. 

Collisions of charge carriers in plasma are associated with the conductivity of the 

plasma. Cold plasmas denote those plasmas where the number of collisions 

(parameterised by the collision frequency, νc, given in collisions per second (Hz)) 

between ions is low. Hot plasmas have a large value for νc, and therefore have 

an appreciable current density, such that it is significant compared to the induced 

current when an electromagnteic wave is incident on the plasma. 

 
Considering the situation where a layer of positive and negative ions have 

dissociated within plasma as shown in Figure 12: - 

 

  

 +     +     +     +     +     +     +  

 -      -      -      -      -      -      -  Displacement, Δx 

 
Figure 12: Arrangement of dissociated ionized plasma 
 
Given a displacement, Δx, between the positive and negative ‘slabs’ a potential 

difference will exist between these two regions, resulting in an electric field acting 

on both layers. The equation of motion is of the form 
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Ax
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∂
∂

= 2

2

, (105) 

 
where A incorporates the electric permittivity of the region between the electric 

charges involved. Clearly this equation is that of an oscillatory system, and as 

such a parameter known as the plasma frequency, ωf, is introduced to describe 

this motion. When considering the formation and motion of plasma, it is often 

considered that the positive/neutral ions within the plasma are stationary, and the 

electrons are the only particles which exhibit the oscillatory behaviour as 

described by (105). This is a good approximation as the mass of the electron is 

1/1836 that of a hydrogen atom (the lightest constituent of the Earth’s 

atmospheric gases), so that the electrons oscillate rapidly with respect to the 

other constituents of the plasma. 

 
Plasma is characterised by its Total Electron Content (TEC), which describes the 

number of free electrons within a given volume, and the collision frequency 

between ions. The TEC can be used to estimate plasma frequency, using the 

expression [2]: - 

 

0

2

ε
ω

e

e
f m

Ne
= , (106) 

 
where ωf has the units of radians per second, Ne is TEC, me is the mass of an 

electron, e and ε0 are fundamental constants (electron charge and permittivity of 

free space respectively). 

 
To determine the effect of an electromagnetic wave incident on a plasma, we 

must quantify the plasma using the complex permittivity [3], εc, which can vary so 

that we get a distribution for the complex permittivity relative to position within the 

plasma, r, i.e. that: - 

 
( ) ( ) ( )rirrcc εεεε ′′−′== , (107) 
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where 1−=i . 
 
The real part of the complex permittivity, ε’(r), gives the effect of the plasma on 

the polarisation of the propagating electromagnetic wave, i.e. it gives the relative 

permittivity of the medium, εr. The imaginary part, ε’’(r), describes how the 

amplitude of an incident electromagnetic wave varies as it propagates through 

the medium, and is related to the conductivity, σ, by: - 

 

( ) ( )
ω
σε rr =′′ , (108) 

 
where ω is the frequency of the wave incident on the plasma, expressed in 

radians per second. 

 

A generic expression for the complex permittivity of plasma in terms of the 

plasma frequency and collision frequency (νc) is given by [3]: - 
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. (110) 
 
 

 
5.1. Cold plasma 
 
In the case of cold plasmas where the collision frequency is low, the electric 

current density tends to zero, and the conductivity of the plasma can be 

neglected. An example of cold plasma is the Earth’s ionosphere [12]. The plasma 

frequencies for principle constituents of the ionosphere are of the order 105 to 107 

Hz [12]. Considering VHF radio waves of frequency 100 MHz incident on the 

ionosphere, the electric permittivity of the ionosphere is of the order: - 
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and as discussed above only the real part of the complex permittivity is 

considered.  

 

5.2. Group and Phase Velocity in Plasma 
 
A characteristic, and somewhat surprising, feature of electromagnetic waves 

propagating through plasma is that the phase velocity of the wave may exceed 

the value of c, i.e. the peaks in amplitude of the wave propagate faster than the 

speed of light in a vacuum. This would appear to violate relativistic theory which 

limits the speed of propagation of electromagnetic waves in a medium to the 

value of c. The definition of the phase velocity, vp, is the rate of change of 

distance with time of a point of constant phase on a wave, explicitly: - 

pv
kdt

dx
==

ω . (111) 

 
The reasoning behind why this does not violate the theory of relativity is that an 

infinitely long wave train of constant amplitude cannot carry information [2]. For 

instance the radar wave considered in this project only carries information when 

a modulation is applied to it. This modulation travels at a velocity less than c, and 

is quantified by the group velocity, vg, [2]: - 

 

g
p

v
v
c

dk
d

==
2ω . (112) 

 
As the wave propagates in the plasma its wavelength increases as given by the 

dispersion relation. For an electromagnetic wave propagating in plasma which is 
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not subject to any external magnetic fields, the dispersion relation for the wave is 

given by [2]: - 

 
2222 kcf +=ωω . (113) 

 
This equation says that for an electromagnetic wave of a known frequency, ω, 

incident on plasma, the wave number, k, will reduce as the plasma frequency, ωf, 

increases. Ultimately, as the plasma frequency increases and surpasses the 

frequency of the incident wave, the plasma no longer allows the wave to 

propagate (k becomes 0 at ωf = ω, then imaginary as ωf increases further). 

Therefore plasma whose plasma frequency is greater than that of the incident 

wave appears opaque to the incident wave. 

 
In section 7 we shall examine the variation of the wavelength of a radar pulse in 

plasma, so for ease of use we rearrange (113) to give the wavelength, λp, in the 

plasma in terms of the plasma frequency: - 
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6. Numerical Results from Time Harmonic Problem 
 
6.1. Plane Wave in Free Space 
 
Firstly, we examine the case of an electromagnetic wave propagating through 

free space and analyse the numerical solution for the evolution of our radar pulse 

within the computational grid, with the permittivity being equal to ε0 (εr = 1) 

everywhere in the domain. We examine this case as the analytical solution is 

known for the whole domain; explicitly that the amplitude, wavelength and spatial 

extent of the wave will remain constant as it propagates forward. 

 

We take the grid spacing Δx = Δy = Δz = 0.2 m, the wavelength λ = 3 m 

(100MHz) along with a pulse width, Pw, of 10 m and pulse length, P, of 6 m. 

Examining the amplitude of the numerical solution for the electric field as time 

progresses: - 

 

  
Figure 13: Amplitude of numerical approximation of the electric field of a wave in 
free space as time progresses 
 
The numerical amplitude reduces with time, and has a rate of change of the order 

-6.23 x10-5 Vm-1ps-1. This would imply that the initial wave would tend to zero 

amplitude after 64 ns, i.e. after approximately 190 time steps. Increasing the 

pulse width of the initial radar pulse region to 15 m: - 
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Figure 14: Variation of amplitude with time of the numerical solution for electric 
field in free space, pulse width = 15 m 
 
The rate of change of electric field amplitude with time in this instance is the 

order of -4.08 x10-5 Vm-1ps-1. This suggests that a broader beam produces less 

(artificial) attenuation of the signal at the beam centre. 

 

Part of the reason why attenuation of the electric field is observed in the centre of 

the beam comes from the use of a Gaussian function in the radial direction to 

factor the initial electric and magnetic fields within the radar pulse (see section 

4.4).  From inspection of the Gaussian function (plotted in Figure 15) we can see 

that as the gradient of the function is non-zero, adjacent electric/magnetic fields 

along the radius will not be equal, for example considering the Hx field for a wave 

travelling perpendicular to the z-axis: - 
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Figure 15: Gaussian distribution schematic 
 
The difference in the Hx field can be expressed as (using equation (87)): - 
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Consequentially this radial gradient in the initial conditions of Hx causes an effect 

on the calculation of Ey at the n = 1 time step (as described by equation (53)). A 

normalized plot of the gradient of the Gaussian function is shown in Figure 16: - 

  
Figure 16: Plot of gradient introduced by radial Gaussian function 
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In effect this causes the wave to travel not only in the intended direction (in this 

case perpendicular to the z-direction) but also to disperse in both the positive and 

negative z directions as time progresses.  

 
6.2. Plane Wave Incident on a Dielectric Medium 
 
The second case considered is when a radar pulse described by a plane wave is 

incident on an ‘infinite’ (extending throughout the whole computational domain in 

the x-z plane) dielectric medium, described by a constant electric permittivity εr. 

We consider εr to take a value of 2, which by using the Snell’s laws and Fresnel 

equations ((28) to (31)) allows a comparison between the analytic to numerical 

results. The reflected wave when the incident wave is normal to the plane (ςi = ςt 

= 0) will have peak amplitude: - 
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So in this situation the backscatter from the dielectric will experience a change in 

phase of π radians (due to the minus sign), with peak electric field amplitude 

17.16% of the incident field. From the analytical solution we would expect this 

amplitude to remain constant as it propagates away from the dielectric. We will 

compare incident fields at 0 and 45 degrees to the normal of the plane of the 

dielectric region. 

 
6.2.1. Incidence Angle = 0 Degrees 
 
The analytical solution for this situation is derived by considering the centre of the 

incident wave (i.e. where the electric field is a maximum). The incident electric / 

magnetic fields are shown in Figure 17: - 
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Figure 17: Incident electromagnetic wave in the y-z plane. Electric field is in Vm-1, 
magnetic field is in Am-1 and distances (y, z axes) are in meters. 
 
The electric field is recorded along the line normal to the material. Considering a 

point at a distance 6.0 m away from the dielectric, the electric field evolution is 

shown in Figure 18. The analytical solution is also shown (in blue): - 

 

 
 
Figure 18: Analytical solution (blue) compared to numerical solution (red) of 
reflected electric field normally incident on a dielectric (εr =2) material. 
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From the figure it can be seen that although there is some agreement between 

the shape of the electric field for the numerical and analytic solutions, it appears 

that there has been some reduction in the wavelength and amplitude of the 

reflected wave. The change in wavelength that has occurred in the numerical 

solution was assessed to be λ=2.8m (c.f. 3.0 m wavelength incident), this is 

shown in Figure 19: - 

 

 
 
Figure 19: Analytical solution (blue) with λ = 2.8m compared to numerical solution 
(red) of reflected electric field normally incident on a dielectric (εr =2) material. 
 
From this we conclude that the wavelength of the reflected wave off a dielectric is 

not modelled correctly in the numerical solution. This may be due to the use of 

the Gaussian function to truncate the radar pulse and is discussed further in 6.3. 

 

The absolute error between the numerical and analytic solution is quantified in 

Figure 20: - 
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Figure 20: Modulus of absolute error between analytic and numerical solution of 
reflected electric field 
 
Therefore from this analysis the absolute error of the peak of the wave from the 

analytical solution is 1.68 x10-8 Vm-1, which equates to approximately 30% of the 

peak amplitude. Additionally the wavelength of the reflected wave has reduced 

by 0.2 m (6.7%) from the wavelength predicted from the theory.  

 
6.2.2. Incident Angle = 45 Degrees 
 
Using a similar analysis as above, we compare the analytical to numerical 

solution of the electric field at a distance 6.4 m from the dielectric, as shown in 

Figure 21: - 

 
Figure 21: Analytic (blue) and numerical (red) solution for the electric field 
reflected off the dielectric 
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Again it is seen that the wavelength and amplitude of the wave is different for the 

analytic and numerical solution. The amplitude of the wave in the numerical 

solution is 44 % below that of the analytical solution. Performing a Fourier 

Transform (FFT) on the data, we can extract the frequencies that comprise the 

wave solutions: - 

 

 
Figure 22: FFT of electric field numerical solution (red) against analytic solution 
(blue) 
 
From Figure 22 we can see that the numerical solution has higher frequencies 

within the solution than the analytic solution predicts, with a peak at ~ 116 MHz 

(0.41 m reduction in wavelength) compared to the input frequency of 100 MHz. 

To examine this further we halve the grid spacing, Δy, to 0.1 m. 
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Figure 23: FFT of electric field numerical solution (red) against analytic solution 
(blue) 
 

In this case there is a peak at the 118 MHz frequency, which equates to a 

reduction in wavelength of 0.45 m. Therefore reducing the grid spacing has not 

reduced the error in wavelength of the reflected wave, and therefore may suggest 

that some aspects of the numerical modelling appear not to be affected by the 

grid spacing. 

 

  48 
  



 

6.3. Conclusions 
 
From the free space and dielectric cases analysed here, the numerical solutions 

produce solutions which propagate in the correct directions compared to that 

predicted analytically; however a number of differences in behaviour are 

observed. In particular, the finite wave disperses tangentially away from the 

direction of propagation due to the Gaussian function used in truncating the 

electromagnetic wave to a finite radar pulse, as discussed previously. This 

results in a significant reduction in reflected amplitude of up to 44%, and this has 

serious consequences if attempting to produce RCS predictions using this 

method, as they are determined by considering the ratio of the reflected electric 

field amplitude to that of the incident field. There is also a reduction of 

wavelength in the numerical solution of up to 15 % compared to prediction, which 

has a consequence when determining the ability of a radar system to detect the 

reflected wave, as each radar will have a specific range of frequencies that it is 

sensitive to (given by its central frequency and its bandwidth).  

 

Halving the grid spacing of the domain in the dielectric case did not reduce the 

error in the wavelength of the reflected wave. This may indicate that some 

aspects of the numerical method is unaffected by the change in grid spacing, as 

we expect the numerical solution to tend to the analytical solution as determined 

by the expression for the truncation error (see section 4.6.) The use of Gaussian 

functions to truncate the radar pulse spatially and radially my be responsible for 

this error. This requires further investigation to confirm or discount. 

 

Possible approaches to remedy the effects of dispersion and change in 

wavelength of the radar pulse would be to examine the initial conditions and 

consider functions other than the Gaussian function to truncate the pulse. 

Additionally other numerical schemes such as the Lax-Wendroff approach 

investigated in [7] could have utility in modelling a radar pulse with sharp 

wavefronts.   
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7. Numerical Results from non-Time Harmonic Problem 
 
The problem considered in this section is that of the radar signature of an object 

surrounded by plasma when interrogated by non-time harmonic electromagnetic 

waves. In particular this will examine the use of a chirped radar pulse to extract 

information regarding the plasma and object arrangement.  

The use of chirp techniques by radar is an attempt to extract additional Doppler 

information from an observed target [14], and to reduce the vulnerability of the 

radar to jamming techniques such as chaff. The general arrangement to be 

considered is shown in Figure 24: - 

Up / down-chirp 
incident pulse 

‘PEC’  object 
εr=1e40 

Plasma, εc

 
Figure 24: General arrangement of chirped pulse and plasma coated object 
 
 
In this arrangement we have used the central frequency of the chirped pulse to 

determine the complex permittivity. The relative permittivity for the frequency 

extremes of the chirped pulse vary from this central value, as prescribed by 

equation (109). This approximation has been made due to the additional 

complexity of implementing a permittivity which will vary as the wavelength 

incident on that particular section of plasma changes. It is recognised that to 

determine the interaction of electromagnetic waves in plasma to a higher degree 

of fidelity, this approximation will need to be addressed in future work. 
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7.1 Incident Wave Representation 
 
The radio wave will have the form of a radar pulse (as described in section 4.4. 

and utilised in section 6) which is Gaussian shaped both along and perpendicular 

to the Poynting vector of the electromagnetic fields in the pulse. For the purposes 

of this section, the wave is now taken to be non-time harmonic with an up-chirp 

(frequency increases linearly with time within the pulse see section 4.5.). The 

number of grid points used within the computational grid will be investigated and 

the effect on the solution (compared to expected behaviour) analysed. Initially a 

150 MHz wave with an up-chirp of 250 MHz through the pulse length is 

considered.  

 

7.2. Grid Spacing Variation 
 

When performing numerical modelling of a sine wave, it is recommended in 

various texts, such as [1], that as an engineering standard, a minimum of 10 

sampling points are required along a single wavelength in order to obtain a ‘good’ 

approximation. Using our condition (104) for minimum grid spacing for a dielectric 

material of relative permittivity εr, for the up-chirp wave that gives the 

recommended resolution of the wave at the 400 MHz (λ = 0.75 m) upper 

frequency limit the required grid spacing is: - 
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By definition, the calculated relative permittivity in the plasma will be less than the 

free space permittivity (εr = 1), so we determine the recommended minimum grid 

spacing to be 0.075 m. This equates to a sampling rate of the incident wave of 10 

points per wavelength (highest frequency, λ=0.75 m) and severe over sampling 

of 26 points per wavelength for the lowest frequency in the chirp (λ=2.0 m). 
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To examine the effect of varying the sample rate of the wave on the error within 

the numerical solution, we examine the variation in wavelength of the transmitted 

pulse within the plasma. From the theory of electromagnetic waves propagating 

through a plasma (see section 5.) the wavelength of the wave will vary 

(specifically elongate), as it enters the plasma region. We will examine how the 

wavelengths predicted from the numerical solution compare to the wavelengths 

predicted from the theory for an up-chirped radar pulse. A schematic of the 

chirped incident wave is shown in Figure 25: - 

  

 
 
Figure 25: Schematic of the up-chirped incident wave 
 
 
Examination of the incident wave shows that the points A, B ,C and D are at 1.5 

m, 3.55 m, 4.65 m and 5.6 m respectively. The pulse width is kept constant at 

14.6 m, and the pulse length is 6.0 m. The time step, Δt, is constant in section of 

analysis, at 144.44 picoseconds (1.4444 x10-10 s) 

 
For this analysis, we will assume that the real part of the complex permittivity is 

constant in the plasma, taking the value 0.25. We also assume the plasma is cold 
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(the imaginary part of the complex permittivity is zero). As the relative permittivity 

is constant, we make the assumption that the plasma frequency will vary as the 

radar pulse passes into the plasma region. Therefore we determine the plasma 

frequency using: - 

 

rf

f
r

εωω
ω
ω

ε

−=⇒

−=

1

1 2

2   
 
 
. (119) 
 

 
Additionally, an expression for the wavelength of the transmitted wave (λf) can be 

produced based on the wavelength of the incident wave (λ) and relative 

permittivity: 
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Given our choice of relative permittivity, in this case (1-εr)½ equals 0.5, the 

wavelength of the wave in the plasma is twice that in free space (the incident 

wavelength), i.e. λf = 2λ. Table 1 details the four points of the incident wave to be 

considered for the numerical analysis: - 

 
 Point A Point B Point C Point D 
Distance along pulse, d (m) 1.5 3.55 4.65 5.6 
Wavelength, λ (m) 2.04 1.56 1.08 0.84 
Frequency, f (MHz) 147.06 192.31 277.78 357.14 
Plasma frequency, ff (MHz) 127.36 166.55 240.56 309.29 
Wavelength in plasma, λp (m) 4.08 3.12 2.16 1.68 
 
Table 1: Details of up-chirped pulse incident on cold plasma plane 
 
The grid spacing is varied such that the lowest plasma wavelength in the chirped 

pulse is sampled between 10 and 3 grid points, with a single grid point removed 
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per iteration. The numerical solution is examined to determine the wavelength of 

the pulse at points A, B, C and D, and these are compared to those wavelengths 

predicted from theory. Table 2 shows the results of this analysis: - 
 
Number of 
sample 
points at λp 
= 1.5 m 

Grid 
spacing 
Δx=Δy=Δz 
(m) 

Wavelength 
from 
numerical 
solution at 
Point A 

Wavelength 
from 
numerical 
solution at 
Point B 

Wavelength 
from 
numerical 
solution at 
Point C 

Wavelength 
from 
numerical 
solution at 
Point D 

10 0.15000 4.20 3.20 2.50 2.00 
9 0.16667 4.25 3.33 2.50 2.00 
8 0.18750 4.31 3.38 2.53 2.06 
7 0.21429 4.18 3.43 2.68 2.25 
6 0.25000 4.50 3.50 2.75 2.25 
5 0.30000 4.50 3.60 3.00 2.40 
4 0.37500 4.50 3.94 3.38 3.00 
3 0.50000 5.00 4.25 3.50 3.50 
 
Table 2: Recorded wavelengths of numerical solution of wave travelling in plasma 
 
These results are plotted in Figure 26: - 

 
Figure 26: Comparison of wavelengths of chirped pulse extracted from numerical 
solution to analytical values  
 
These results show a consistent variation of the wavelength in the chirp derived 

from the numerical solution to the theory at point D (i.e. the high frequency, low 
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wavelength end of the chirp). The slope of the chirp predicted by the numerical 

solution is consistent with the theory for grid spacing 0.15 to 0.3 m, and it can be 

seen that when the grid spacing equals 0.375 m, the chirp begins to lose its 

shape (the gradient of the wavelength varies from the incident wave).  

 

 
Figure 27: Relative error in wavelength of transmitted wave as grid spacing (and 
therefore incident wave sampling rate) is varied. 
 

Figure 27 shows that the error in wavelength from the numerical solution 

increases as the number of points sampling the wave is reduced. Of particular 

interest is the fact that these four lines are not parallel, that is the error in the 

chirped wave for the low wavelengths increases as the number of sampling 

points decreases. This would suggest that there may be some effect by reducing 

the sampling rate of the wave on the overall error of the solution. However, this 

must be investigated further as this initial approach involved decreasing the grid 

spacing for the whole grid, and by the expression for the truncation error (see 

section 4.6.) we expect the error in the solution to reduce by Δy2.  
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7.3. Variation of Chirp in Incident Wave 
 

We now consider an incident wave on a plane of plasma (with fixed electric 

permittivity of 0.25) with a significant amount of chirp to see the error in the 

numerical solution throughout the wave as time progresses. By keeping the grid 

spacing fixed the sampling rate of the wave will vary along the incident pulse and 

allow analysis of the error as a function of sampling rate. 

 

A down-chirped wave, from 550 MHz to 200 MHz, is allowed to propagate into 

the region of the computational domain modelled as cold plasma. After 150 time 

steps (Δt = 1.4444 x10-10 s), the numerical solution for the wave in the plasma is 

shown in Figure 28. In this figure a wave corresponding to the incident wave with 

doubled wavelength is shown for comparison. 

 

 
Figure 28: Comparison of numerical solution of wave in plasma (red line) against 
incident wave (blue line) with doubled wavelength 
 
From this figure it can be seen that the right hand side (high frequency) of the 

region that the numerical solution for the wave has an amplitude that is lower 

than the incident wave, while the numerical solution for the low frequency end 

shows the opposite effect. This is due to the effect of the group velocity of the 
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wave in the plasma, with the ‘information’ (the Gaussian modulation of the wave 

in the direction of propagation) propagating at a slower velocity than the phase of 

the wave.  

The phase velocity of the wave in the plasma is given by equation (111), and can 

be combined with the expression for the wave number and plasma frequency of 

the wave. 
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Using equation (120), this further simplifies to: - 
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For our electric permittivity of 0.25, this implies that the phase velocity will be 2c, 

i.e. twice the speed of light in vacuum. The group velocity is given by equation 

(112) and gives a value of 0.5c. 

 

The phase velocity for the down-chirped wave was extracted by examining the 

position of the peaks in the wave relative to the y-axis at time 2.0216 x10-8 

seconds and 2.3104 x10-8 seconds, as shown in Table 3: - 
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Peak 
Number 

Wavelength 
(m) 

Distance (m), 
t=2.0216x10-8 s 

Distance (m), 
t=2.3104x10-8 s 

Phase 
Velocity 
(multiples of 
c) 

Error in phase 
velocity 
(multiples of c) 

1 0.6389 10.575 12.3 1.9910 -0.0090
2 0.687 9.925 11.65 1.9910 -0.0090
3 0.7909 9.175 10.9 1.9910 -0.0090
4 0.8449 8.4 10.15 2.0199 0.0199
5 0.9469 7.5 9.275 2.0487 0.0487
6 1.044 6.55 8.275 1.9910 -0.0090
7 1.18 5.475 7.2 1.9910 -0.0090
8 1.319 4.3 6.075 2.0487 0.0487
9 1.505 3.025 4.775 2.0199 0.0199
10 1.741 1.6 3.4 2.0776 0.0776
 
Table 3: Examination of phase velocities recorded from numerical solution of the 
electromagnetic wave in the plasma 
 

The phase velocities recorded from the numerical solution have a mean of 

2.0170c, with a standard deviation 0.0318c. The phase velocities for the low 

wavelengths tend to be lower than predicted, and for the higher wavelengths are 

greater than predicted. Figure 29 summarizes these findings in terms of the 

sampling rate of the incident wave and the relative error in phase velocity: - 

 
Figure 29: Relative error in phase velocity of numerical solution 
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There appears to be some increase in error of phase velocity as the number of 

sampling points of the incident wave increases to 11.6 points per wavelength. 

The numerical solution for the other points is within 2.5% of the actual phase 

velocity predicted by theory; this is discussed further in 7.4. 

The wavelengths within the chirped pulse were extracted by examining the 

difference in distance along the y-axis of adjacent peaks in the numerical 

solution, as shown in Figure 30: - 

 

 
2
λ

Figure 30: Schematic of wavelength measurement 
 

A comparison of the wavelengths of the analytic solution to the numerical solution 

is shown in Figure 31: - 
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Figure 31: Relative error in wavelength (in meters) against sampling rate of 
incident wave (points per wavelength) 
 
From Figure 31 it can be seen that for the chirped wave regions sampled at 

greater than 4 points per wavelength, the wavelength from the numerical solution 

is within 5 % of that predicted analytically. Below this sampling rate, the 

numerical solution shows significant deviation from theory reporting a wavelength 

with a relative error of 37%. In general there is also an increase in relative error 

as the number of sampling points increases up to the maximum sample rate. 

There are two possibilities for this behaviour, either the methodology used to 

obtain the wavelength is flawed, or this is an effect caused by the use of the 

Gaussian function along the wave. Further investigation is required to determine 

this. 

From this analysis, the requirement to sample a sinusoidal wave by ten points 

per wavelength appears to be invalid, as there appears to be no loss of phase 

information of the wave for a sampling rate of 4 points per wavelength, which 

appears to be the lower limit for sampling.  
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7.4. Conclusions 
 
From the analysis in this section, it is concluded that the use of a Yee grid and 

finite radar pulse has utility in accurately modelling the behaviour of chirped 

electromagnetic waves in plasma. The minimum number of sampling points 

required to use this approach is assessed to be 4 points per wavelength at the 

high frequency end of the chirp. Numerical results in this region for the 

wavelength and phase velocity of the wave propagating in the plasma are within 

5 % and 4 % of the analytical solution respectively. No examination of the group 

velocity has been made in this analysis, and is left as an area for future research. 
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8. Summary 
 
The research within this report has shown that the FDTD has the utility to model 

the propagation of electromagnetic waves in various media. When modelling 

finite radar pulses rather than infinite, time-harmonic incident fields, careful 

consideration must be given to the shape and composition of the numerical grid 

and initial conditions, in particular to reduce the dispersion of the pulse 

perpendicular to the direction of motion. In this report a Gaussian function has 

been utilised to set up a continuous, and differentially continuous, incident pulse; 

which may be up or down chirped.  

 

Numerical results for a time harmonic wave propagating in free space show a 

reduction in the peak amplitude of the electric field of up to 0.5% per time step, 

although this rate is reduced by 35% when the pulse width was doubled. 

 

Analysis of the numerical solutions from the examples considered has shown the 

method used in this report can predict electric field peak amplitudes (as predicted 

by Snell’s law/Fresnel equations) of a reflected wave off a dielectric surface to 

within approximately 60% percent. This accuracy is dependent on the angle of 

incident on the wave, grid spacing chosen and dimensions of the pulse as 

defined in the examples in section 6. Due to the size of this error, this method is 

not recommended for use in determining RCS values of dielectrics, due to the 

requirement to accurately determine reflected electric field amplitudes. 

Additionally a systematic error in the wavelength of the radio wave reflected off a 

dielectric was observed, which may be due to the use of a Gaussian function 

along the length of the pulse, though further research is required to confirm this. 

 

An investigation into the required resolution of the modelled chirped radar pulse 

(incident on a plasma) to produce numerical results which are consistent with 

electromagnetic theory has shown that a sampling rate of four points per 

wavelength appears to be sufficient to ensure the phase information and phase 

velocity of the transmitted pulse is recoverable from the numerical solution. From 

  62 
  



 

the results there appears to be some increase in error of the plasma wavelength 

as the number of sampling points increases. It is postulated that this is due either 

to the use of a Gaussian function in the pulse or due to an error induced in the 

methodology of measuring the wavelength in the solution. 

 

The use of a Gaussian function to truncate an infinite sine wave so that a finite 

radar pulse in space can be represented numerically appears to be problematic. 

The analysis in this report has shown that the numerical solution for a finite pulse 

propagating in a dielectric/plasma exhibits dispersion as the computation 

progresses forward in time. Dispersion of the electric field is observed 

tangentially to the direction of propagation of the wave. 

 

Future work in this area would be to investigate different finite difference 

formulations of Maxwell’s equations, and assess their capability to model non-

time harmonic radio waves. An extension of this work would be to determine 

other methods of representing a finite radar pulse within the computational 

domain, so that the dispersion of the Gaussian function observed in this work 

may be negated, for example the Lax-Wendroff approach investigated in [7] is 

reported to have good utility is modelling sharp wavefronts. Additionally it is 

recommended that adaptive, moving meshes be investigated to assess their 

capability in modelling a chirped radio wave, as this would allow a constant 

sampling rate along the whole length of the incident radar pulse, which should 

result in the error in the numerical solution being equally distributed throughout 

the whole volume of the pulse. Finally, the ability of a radar system to extract 

information from the chirped pulse reflected off a plasma coated object should be 

investigated further. 
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Appendix A: Vector identities 
 
Lemma 1 
 

0=×∇⋅∇ A  
 
Proof 
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for sufficiently well behaved vector field (i.e. with no discontinuities) the order of 

partial differentiation is unimportant, i.e.:- 
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and so on for each Cartesian co-ordinate differential combination, so that we 

achieve the result: - 
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