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Abstract

In this dissertation we use an upwind finite difference method known as Roe’s
scheme to solve the flux form of the shallow water equations over a sphere explic-
itly. The shallow water equations are transformed into a set of conservation laws,
together with source terms as a result of the earth’s rotation and the presence
of mountains on the earth’s surface. We incorporate the technique of operator
splitting on a regular longitude latitude grid to allow the method to be applied
to the two-dimensional shallow water equations. As a result of the first order
scheme being highly diffusive we observe the need to use a second order version
of Roe’s method which incorporates a flux limiter. The method is applied to a

standard test case in numerical weather prediction.
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Chapter 1

Introduction

The weather is a very important factor in many peoples lives, so it is of great
interest to know what the weather will be like in advance. Thus there is a need
to be able to predict the weather, as it has a great influence on society.

In order to make predictions, mathematical models must be formed. In form-
ing any model, it must be decided exactly what it is that is being modelled, and
what factors are involved. Once the factors have been decided, a way must be
found to quantify them. Only then may the laws and relationships be postulated
which characterise the model. Often the result is a set of complicated differen-
tial equations for which there is no analytical solution. If this is the case then
numerical techniques must be applied to find a solution to the problem.

Within the atmosphere many complex processes take place. Even if it is
desired to model a particular process, quite often it is not possible to isolate that
process from all of the others, and some combined effect must been considered.

Numerical weather prediction involves solving numerically a large set of differ-

ential equations. Even though certain assumptions and simplifications will have



been made to derive the equations, the problem is still a complex one, and finding
the solution poses many difficulties. Meteorologists are always looking to improve
the numerical methods used to study the weather. Applying different numerical
schemes to the problem may yield different results. A decision must be made as
to what properties are desirable in a scheme and at what computational expense
these can be attained. This gives an indication of the performance of a particular
scheme in terms of its properties. Another way to draw a comparison between
different methods is to apply the methods to much simpler problems which some-
how reflect the behaviour of a larger system, perhaps to a problem where the
analytic solution is known. Such a problem is referred to as a test case. Should
a particular method fail to work well with a test case, then it almost certainly
will not work with a more difficult problem. However should the results look
promising then there is a chance that the method will work when applied to a
more complex system.

In atmospheric modelling one such test case is the shallow water equations.
The shallow water equations describe the depth and velocity profiles of an inviscid
fluid. They are derived from the Navier-Stokes equations by assuming that the
vertical component of the acceleration of the fluid flow is zero, and by intergrating
the resulting equations over the depth of the fluid [4]. This leads to a two-
dimensional problem.

A particular problem encountered in numerical weather prediction on longi-
tude/latitude grids is occurrence of singularities at the poles. This is a conse-
quence of using a numerical grid which has nodes at the poles. At such points the

grid lines meet and there is a difficulty in defining specific quantities as the infor-



mation conveyed from the different latitudinal lines may conflict. One solution
to this problem is of course not to have grid points at the poles.

The poles can again present a problem when regular grids are used, as the grid
points bunch together in their vicinity. When explicit finite difference methods
are used, this imposes the need for a smaller time step at the poles than required
elsewhere on the grid, in order to satisfy the Courant-Friedrichs-Lewy (CFL)
stability condition.

The purpose of this project is to implement an upwind TVD scheme, namely
Roe’s scheme, for the shallow water equations on a rotating sphere, which is
a standard test case in numerical weather prediction. In the following section
Roe’s scheme will be discussed and its advantages and disadvantages over other
methods considered. Chapter 3 deals with the shallow water equations and the
manipulation involved to enable the implementation of the method. A test case
is then presented, the results from which are shown. Finally a discussion is given

on the conclusions drawn from the project.



Chapter 2

Roe’s method

2.1 Roe’s scheme

Roe [8] proposed a method to obtain an approximate solution to a set of conser-
vation laws of the form

w,+F, =0 (2.1)

based on regarding the data as piecewise constant and solving a set of Riemann
problems. A Riemann problem is one where the initial data is constant either
side of a discontinuity. If the discontinuity lies at the point + = 2’ then the initial

values are

wy ifx<a
w(0,2) = (2.2)
wgr if x>

where w and wg denote the left and right states and «’ is the interface between
them.
The solution to equation (2.1), w7, is regarded as an approximation to the

average state between two interfaces, where the interfaces are placed at the mid



points of the cells, i.e.

. 1 (i+1)Az
W' = Ax/(, o, AN (2.3)

where Az is the grid spacing on a regular grid, and At is the time step.

If the problem (2.1) is approximated by
w; + Aw, =0 (2.4)

where A is a constant matrix, then an approximate solution to the exact problem
(2.1) can be taken to be the exact solution to the approximate problem (2.4).
The matrix A which depends on w;, and wg, can be picked in many ways but

in Roe’s scheme is chosen so that it satisfies the following properties.

(i) A constitutes a linear mapping from the vector space w to the vector space

F.

(il) As wp — wp — W, A(WL,WR) — A(w), where A = a—F

ow’

(111) For any wpr, wp, A(WL,WR) X (WL — WR) = FL — FR.
(iv) The eigenvectors of A are linearly independent.

The above set of conditions, termed ‘Property U’ by Roe [8] ensures that the
Riemann solver has the desirable properties that the solution is consistent and
conservative and therefore gives the correct shock speeds across a shock.

For any two states, wy, and wg, the flux difference can be expressed as [11]
Fr—Fp =Y @\ (2.5)
k

where &, are the right eigenvectors of A, \; are the eigenvalues or wave speeds

and aj, are coefficients known as the wave strengths. This results in the flux at



the interface being

A

& (2.6)

2
k

DO | —

1
F (wp,wg) = i(FL + Fr) —

For linear problems, this is equivalent to the early Courant-Isaacson-Rees (CIR)
method [1].

To apply the method to a non-linear problem, the local linearisation described
above can be introduced by choosing A having property U which implies that its

eigenvalues and eigenvectors not only satisfy equation (2.5) but also
e
Each & satisfies a scalar scheme and the method of updating is to
ad — 205, apen ¢ if Ay >0 (2.8)

a Ar kQp€p 10 Wp 1L A :

and
AV ok
add —A—)\kozkek towyp if A, <0 (29)
x

where S\k, ay and € are determined in the calculation using the values of w and

F from the current time step, and so the method is explicit.

2.2 Why use Roe’s scheme?

In this instance the main advantages of using Roe’s scheme are that it allows the
use of upwinding which preserves monotonicity of the solution, and of course it
is also conservative.

When applied to scalar problems, Roe’s method is the same as the first order
upwind method, yielding only first order accurate results that are free of oscil-

lations. Often in a general problem where greater accuracy is required, central



differences would be used to approximate the spatial derivatives. However in the
case of hyperbolic conservation laws, using central differences results in a uncon-
ditionally unstable scheme, when applied explicitly. Although implicit central
difference schemes have no stability limits, they can be much more computation-
ally expensive to use than explicit methods and can also suffer from oscillations.

Another possibility is the Lax-Wendroff method. This scheme is explicit,
second order and conditionally stable. However the method is also prone to
oscillations which can give non-physical solutions, such as negative depth. Roe’s
scheme can be made second order by the introduction of a flux limiter [12].
Limiters add an anti diffusive term to the scheme which helps reduce the effects

of diffusion, whilst maintaining an oscillation free method.

2.3 Application to 2-d problems

To enable Roe’s scheme to be applied to a system in 2-d, the equations must be
decomposed into a set of one dimensional problems. One technique for achieving
this is known as ‘operator splitting’ (see [2] for application to the Euler equations).

For the system of equations
w,+F,+G, =0, (2.10)

applying the use of operator splitting in its simplest form results in the following
1-d problems

“w,+F, =0 (2.11)

“w, + G, = 0. (2.12)



At each time step, the solution to equations (2.11) and (2.12) are found in turn
over the region and superimposed to obtain the approximate solution of (2.10).
Another more complex form of splitting which can be used to obtain the
decomposition is ‘Strang splitting’. This is similar to the splitting described
above in that it involves rewriting the problem as a set of equations which are
similar in form to equations (2.11) and (2.12). The difference between the two
types lies in the order in which the equations are solved and in the size of the
time step used. If we represent the problem in equation (2.10) using the simpler

form of splitting as

where L7 ,, represents equation (2.11) and likewise L{ ,, is equation (2.12), then
2 2

the application of Strang splitting to the problem can be denoted by

Ly . L%

LY 1
LA AL

X
1 1
TAt TAt

which is equivalent to
L;AtLéAt zAt
so that we solve the problem along the z coordinate direction using a quarter

time step, then the y direction using a half time step and then finally solve again

along the = direction using a quarter time step.



Chapter 3

The equations

3.1 Standard form of the shallow water

equations

In flux form (with source terms) the shallow water equations on a rotating sphere

can be written as [13]

a(gtv) + V.(vh'V) = —fk x h*v — gh*vVh (3.1)
and
oh* )
o TV =0, (3.2)

where h* is the depth of the fluid and & is the height of the free surface above
a reference sphere i.e. sea level. If h, represents the heights of any mountains
present then h = h* 4+ hy. The horizontal vector velocity, v, has components
u and v in the longitudinal (¢) and latitudinal () directions respectively. The
radius of the earth is labelled a, and ¢ is the gravitational constant. The Coriolis

parameter, f,is given by f = 2Qsin § where () is the rate of rotation of the earth.



Using i, j and k to denote the longitudinal, latitudinal and outward radial unit
vectors respectively, the horizontal vector velocity is represented as v = ul + v]J

and the spherical horizontal gradient and divergence operators become

1 0Oh jOh
Vh= acos@%—l_g% (3:3)
and
1 Ou  O(vcosh)

If equation (3.1) is written in terms of the velocity components then after some

rearrangement, the resulting equations are

d(h*u) . gh™ oh u .
5 + V.(h uv)—l_acos@a_qﬁ_(f—l_ gtane)hv (3.5)
and
d(h*v) . gh*oh ( u ) .
5 + V.(hvv) + pate7 i [+ Etan@ h*u. (3.6)

Expanding the divergence terms then gives

o1 la(h*u) 0(/1*%089)]:0 (3.7)

ot +acos@ d¢ + a0

d(h*u) 1 [o(h*u?)  O(h*uvcos 0)] gh* 0h (

u b
ot +acos@_ d¢ + a0 - f—l—gtane)hv

+ acos f a—qﬁ B
(3.8)

— (f—l— %tan@) h*u.

(3.9)

d(h*v) N 1 [d(h uv) N d(h*v? cos 0) N gh* dh
ot acos | 0¢ a0 a 90

3.2 Obtaining the conservation form

As they stand, equations (3.7) to (3.9) are not in the form required to apply Roe’s

method. We now proceed to derive the equations in conservation law form as far

10



as possible. Firstly, multiplying the equations through by cos#, and introducing

a new variable A’ where h' = h* cos ), we obtain

oh' 0 h'u d (h'v

ot + o0 (acos (9) + 0 (7) =0 (3:10)
a ., ., d [ huv a [ h'v? gh' Oh u ,
a(hu)—l_%(acose)—l_%( a )—I_acos@%_(f—l_gtane)hv (3:11)
a ., d [ huv d [ h'v? gh' Oh u ,
" 5 (9) * 50 (—) e ) LR

By substituting h = h*+h, into equations (3.11) and (3.12), the partial derivatives
involving h can be split up, and after some manipulation and rearrangement,

equations (3.11) and (3.12) become

Q(h’)_|_2 W' + h/Qg _|_2 h/ﬂ —
ot d¢ \acosf = 2acos?6 N\ a )

utandy , gh' Ohy
(f+ a )hv_acose d¢ (3:13)

Dy 8 (d 0 (1 )
o\ 0¢ \ acosb a0\ a 2acosf )
utanf\ gh' Oh,  h’gtané

_(f+ )hU_TaG_ 2a cosf’

(3.14)

Together with equation (3.10), these can now be written as the matrix system

w,+F;+Gyg=f+g+s (3.15)
where
w = (h', h'u, h'v)" (3.16)
h! h! 2 h/2 h! T
A g_ v (3.17)
acosl acosl = 2acos?0 acosb
v h'uv h'v? h'*g T
G=1[_—_ 1
(a’ a  a +2acos@) (3.18)
T
gh' Oh,
= — — 1
(07 acos f 84570 (3:.19)

11



a b

12 T
S:(th,v(f_l_utan@)7_h,u(f+utan(9)_h gtan@) ‘ (3.21)
a a

’ T
g = (0,0,—gh ahs) (3.20)

2a cos

3.3 Application of Roe’s method

Following along the lines of previous work by Glaister ([2],[3]) we proceed to apply

Roe’s method. Using the method of operator splitting, the two equations to be

solved are
L +F;, =1+ ! (3.22)
2Wt ¢ = 25 .
and
1 1

However, in applying Roe’s scheme, only the source terms found in f and g will

be included in the first instance, i.e. the method will be applied to the problems

1

1

The source terms found in s, which result from the earths rotation, can be ac-
counted for after equations (3.24) and (3.25) have been solved.

First let us consider equation (3.24)

3.3.1 Applying to the longitudinal (¢) direction

In order to find A, the Jacobian of F, the vector w is redefined as
w = (h',m,n)" (3.26)

12



where m = h'u and n = h'v. In terms of these variables, F is now

acosf ah'cosh = 2acos?0’ ah’ cosb

2 h/2 T
F:( m LI AL ) (3.27)

From these definitions of w and F, the Jacobian of F is

1
0 wcoss U
OF
A = — = _ m2 _I_ h'g 2m 0 (328)
ah'® cos @ acos ah’ cos
ow 2 20 ah'cos@
__ mn n m
ah!? cosf ah’cosf  ah’cosf

or, in terms of the original variables,

1
0 a cos @ 0
A= __ h'g 2u . 3.29
acosf + acos?  acosf 0 ( )
_w v U
a cos @ acosf acosf

The eigenvalues of A are then found to be

) P T A P I = — (3.30)

- 3
acosf  acosh’ acosh acosh’ acosf’

with corresponding eigenvectors

1 1 0

€ = u—|-\/W ; €2 = u—m y €3 =110 |- (3'31)
v v 1

Having found exact expressions for the Jacobian and its eigenvalues and eigen-
vectors, we can proceed to find the wavestrengths for two adjacent states wy, and

wg, i.e. to find a7, ay and as such that

3
k=1
and also (using property U)
3
AF = Z )\kozkek, (333)
k=1

13



where A () = ()5 — (.); denotes the difference between the right and left states.

From our definition of w this leads to the following conditions,

Ah/ = 1 —|— Qo (334)
A (h'u) = oy (u + h*g) + gy (u — \/h*g) (3.35)
A (h'v) = ayv + azv + as. (3.36)

Substitution for a, oy and az yields the following expressions for the wavestrengths

1 1
= —AR A(hu) — uAR 3.37
= JAN+ 5 (A — uaW (3.7
ay = 1Ah’ _ ! [A(R'u) — uAN] (3.38)
) 2k g '
az = A(R'v) — vAR. (3.39)

The approximate problem

In applying the method, it is not equation (3.24) that is solved, but its approxi-
mation over the interval [¢r,, ¢r|. The vectors wy, and wg are the approximations
to w at the points ¢ and ¢r which lie either side of the interface positioned at

1 (é1, + ér). The problem to be solved is

n+l n » o
Wi - Wh A(WR wr,)
Al Ao

= f(w") (3.40)

where P corresponds to either the left or the right state, L or R. A is the ap-
proximation to the Jacobian and f approximates the source terms due to the

mountains. We shall choose f to be

~ T
- gh! Ah,
f= (0, veosd g ) (3.41)

14



Rearranging equation (3.40) gives

To find the new value of wp at the next time step, (wp — wy,) and f are projected

onto the local eigenvectors. If

3

WRr — Wy, = Z ONékék (343)
k=1
then
~ 3 ~
A (WR — WL) = Z )\kdkék (344)
k=1
where
AAw = AF (3.45)

Moreover, expanding the source term in terms of the eigenvectors of A
— 2 Prés (3.46)
enables equation (3.42) to be rewritten as
witl = wh + ﬁt 233 ArAker (3.47)
? it

where "N}/k = &k + Bk/j\k
To perform the update, each interface (or cell) is considered in turn. For a
specific cell, either wy, or wg will be incremented, depending on the sign of the

eigenvalue. The result is that we

Ao
or
AV R e X
add —@Akaek towy if A, <0 (349)

where S\k, Y, and € are to be determined.

15



Approximate values for the Riemann solver

We now go on to find approximate values for the variables at the interface states
based on the left and right values at the grid points. The approximate values
for the eigenvalues, eigenvectors and wavestrengths within a cell are found by
substituting the approximate values for u, v and \/h*g at the interface into the
expressions for the exact values of A\g, e, and ay. Thus it remains to find approx-
imations for u, v, A" and /h*g at the mid points of the cells.

Let ;/;2 denote the approximation to \/h*g, then from equations (3.44) and
(3.45) and, after multiplication through by cos @, the following expressions are
obtained

A(hu) = (@+) én+ (i — ) G (3.50)
A(h’ 2

A(h'uv) = ( + ) béy + (it — 1)) Bay + tidis, (3.52)

) (it + ) s + (@ — ) (3.51)

where a tilde above a value denotes its approximation.
By expanding the brackets in equation (3.51) and rearranging the right hand
side, the equation becomes

h’zg

2a cos

A(h’u2 + ) = (02 + ) (61 + é2) + 200 (61 — ). (3.53)

Further rearrangement gives

N N h'g
/ ~ 12\ /
w2 AR — 20A (Wu?) = 20N — A(Zcos 0). (3.54)
One way of satisfying equation (3.54) is to make it identically zero on both sides.

Thus setting by the right hand side to zero, ;/;2 is given by

2 = by + R )
2 2cos O (Wp + i) (3.55)

16



Similarly, solving the quadratic for @ gives

O A(Ku) £ AN ) — (AR A(hu?)
0= Y (3.56)

and taking the negative value for the second term (the positive value leads to

nothing physical), @ becomes

houp + /b5 u
VIRTR TV ILTE (3.57)

U =
hip 4+ +/h%
From equation (3.56)
A(R'u) — aAL = /Wb Au, (3.58)

so if i’ is defined as /h’zh’; then
A(h'u) — aAR = b Au. (3.59)

Having found @, ¢ for a given h’ we now find #. Rearranging equation (3.52)
yields

The wavestrengths can be eliminated by using equations (3.37) to (3.39) with u,
v replaced by the interface values and \/h*g replaced by . After some rearrange-

ment this gives
A(h'uv) — aA (h'v) = 0 [A(h'u) — aAR']. (3.61)

As with equation (3.54) we consider each side of equation (3.61) in turn and set
both sides to be zero. Then substituting for @ and taking the differences between

the states gives

. Jhisvor + /R
A(Wuv) — @b = h’Au( o /M) (3.62)
N

17



and

S[A(Kw) — GAR] = b’ Au.

Combining these two expressions, v is found to be

(Vhavr+ /M)
Wb

The approximate values for the wavestrengths are then

v =

1 h!
dy = ~AN + —Au
2 %

/
Ah’ — h—NAu
2

O~é3 = iL/AU.

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

All that remains is to find the values of Bl, Bg and 63 that represent the source

terms. From

J A
f(w')= —— e
() = =55 2 B

and from the definition of f

. g’ Ah,
f = -
(07 acosl Ao’ 0
the following are obtained

0=-— 51‘|‘52)

Aqﬁ(

N
Leosd Ao Aqs( i+ ) B -

0= _Aiqb (051 + 052 + 53)

(a0

from which, the corresponding values of B1, By and B3 are found to be

3 X
b=
azp cos 6
. R
Br=——
a) cos 6
Bg = 0

18
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(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)



3.3.2 Applying to the latitudinal () direction

In a manner similar to that applied previously, by writing G as

n mn n? h'*g ’
G= (E’W’ﬁ—l_ ) (3.76)

2a cos O

its Jacobian, B, is found to be

0 0 1
0G
B= P e v (3.77)

with eigenvalues

Vh* Vh*
)\1 - B —|— g 5 )\2 - E - g 5 )\3 - E (378)
a a a a a
and eigenvectors
1 1 0
e; = U , € = U , €1 = 1 (379)

v+ h*g v —+/h*g 0
As before we can find expressions for the interface values of u, v, \/h*g and A’

which lead to definitions of &y, &y and &5 that satisfy

3
k=1
and
3 ~
AG =) Aiagey. (3.81)
k=1

Following the algebra through the resulting expression for ¢? is

g A
o4

(3.82)

19



However unlike last time, cos @ will be different for the two states. Because ¢ must
be a real quantity, as it approximates \/A*g, it is necessary that ¥)2 be positive.
This can be ensured by replacing the left and right values of cos @ with an average

value, for example the value of cosf at the interface. Thus ;/;2 becomes

N g

where 0; = %(GL + 0r). We find that @ and © are the some as in the previous

case, namely

\/Prugr ++/hru
a= YRR VILTE (3.84)

Wi+ /1,

(WUR + R UL)
Rh’R+ WT; . (3.85)

Setting h' = \/ P b’y results in the following expressions for the wavestrengths

and

v =

SNV (3.86)
a1 = 2 277[} v .
71
Gy = San = A (3.87)
2 %
as = h'Au. (3.88)

As before the source term is projected onto the local eigenvectors. Defining g as

T
L gh' Ah,
and using
1 23: N
(W) =——")_ Biéx (3.90)
A¢ k=1
leads to the values of 3, 5 and 3, being
L (3.91)
e arh cos 0 '
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Chapter 4

The test case and computational

considerations

4.1 The test case

The test case to which we shall apply the method is the first problem in a suite
of seven cases proposed by Williamson et al [13], developed specifically for the
shallow water equations.

The problem entails predicting the motion of a cosine bell over the globe,
and tests the advective part of any scheme, by specifying analytic values for the
advecting winds. Different wind directions are used, which alter the path of the
bell.

The advecting wind is given by
u = ug (cos f cos a + sin f sin @) (4.1)
v = —ugsin ¢sin a, (4.2)

where « is the angle between the axis of solid body rotation and the polar axis

22



of the spherical coordinate system.

In the paper it suggests running the code with o = 0.0, 0.05, /2 — 0.05 and
7/2. With « set to zero, the profile moves around the equator. For « equal to
7 /2, the trajectory is over the poles.

The initial cosine bell is defined by
%g(l—l—cos (%)) ifr<R

h(¢,0) = 7 (4.3)
0 ifr>R

where h = 1000m, R = a/3 and r is the radius of the great circle distance
between (¢, ) and the centre of the bell which is initially at (¢.,6.) = (3%/2,0).

The radius r can be calculated from
r = acos " [sinf.sin 0 + cos . cos O cos (¢ — ¢.)] . (4.4)
The parameter values to be used are
a=6.37122 x 10°m
0 =17.292 x 10°s7*
g = 9.80616ms?

and ug is to be set as 2ra/(12 days) which is equivalent to about 40ms~*. There
are no mountains in this problem, corresponding to hy being zero everywhere.
If the program is run for 12 days then the initial profile should have returned

to its starting point, without any change of shape.

4.2 The grid

The grid we shall use has points equally distributed in the longitudinal and lat-
itudinal directions, with grid spacings A¢ and A# respectively. In this instance

23



the angle 6 is not the standard polar coordinate but is instead measured from the
equator so that @ lies in the interval [—x /2, 7/2] where —n/2 is the South pole
and 7/2 is the North pole.

There are no nodes at the poles, nodes which lie directly opposite one another
closest the poles being %A@ from the pole. To avoid nodes at the pole points, it
becomes necessary that there are an even number of intervals in the longitudinal

direction.

4.3 Stability analysis

For an equation of the form

wy + auy =0 (4.5)
the stability (CFL) condition is
At
a2t < (4.6)
T

In this instance, there are two stability conditions [4] which must both be satisfied.

These are
5\maav At
— <1 4.
acosb Aop| — (47)
for the ¢ direction, and
a AO| '

for the # direction, where S\MM = maX(S\l, 5\2, 5\3) for the two problems.
From the definitions of the approximate eigenvalues for the two directions, we
see that condition (4.7) imposes a more severe constraint on the time step than

condition (4.8) especially as the profile tends towards the poles where cos — 0.
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Chapter 5

Results

5.1 Translation of the bell around the equator

The first figure shows a contour plot of the initial height of the cosine bell, where
h = h* with the centre positioned at (¢,60) = (,0) with a peak value of 1000m.

Running the program for 12 days with o = 0 on a 96 x 73 grid using a time
step of 1800s produces figure 2. Although the centre of the bell has returned to
its initial position and the contour plots show the profile to be almost symmetric,
a large amount of diffusion has taken place (as expected), as can be seen by
the fact that the profile has spread out and that the peak value has decreased
dramatically. It is expected that refining the grid would reduce this problem and
as figure 3 shows where the grid spacing has been halved, this turns out to be
the case.

To investigate how much the size of the time step contributes to the diffusion,

the program is run with At = 450s, as shown in figure 4. From comparison with

figure 2, we deduce that the size of the time step is not a contributing factor to
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the diffusion problem as figures 2 and 4 are almost identical.

The results so far suggest that it would be wise to introduce a flux limiter
into the code [12]. Using Roe’s ‘superbee’ limiter [9], the amount of diffusion is
greatly reduced, as demonstrated by comparing figure 5 with figure 2, where the
two runs are performed on the same grid. In figure 2 we see that the peak height
has been reduced to about 65, whereas in figure 5 the reduction is much less, and
the peak value is about 500. However an offset to this improvement is the need
for a smaller time step, as it is found that using At = 1800s gives an unstable
solution. We also observe that the use of operator splitting has resulted in the
‘squaring’ of the solution. This can be seen by the way in which the contour
lines have become almost parallel with the grid lines. This is more evident in the
results using the limiter as the profile is less diffused here. However it can also be
seen that in the latitudinal direction the profile has maintained its original width.
Another noticeable effect is the extra steepening of the profile on the right hand
side.

Repeating the run with the same values but this time using Roe’s ‘minmod’
[9] limiter gives figure 6. Although the results are better than when no limiter
was used, in this case it is evident that the superbee limiter is superior than the
minmod limiter in reducing the amount of diffusion.

Figures 7 and 8 show the results when both limiters are implemented on a
192 x 146 grid using a time step of 450s. As seen before using a finer grid reduces
the amount of diffusion, and the steepening effect is less evident when the mesh
spacings are reduced as a result.

A further improvement is seen in figures 9 and 10 where Strang splitting is
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used to decompose the system of equations. Though the squaring effect is still
present, the maximum height values are much better than before.

When the program is run using o = 0.05, the results produced are very similar
to those already seen and so are not included here.

For all the runs we see that the profile has been elongated along the direction
of the flow. There are no oscillations or negative heights present, and the solution
remains smooth.

There are a multitude of papers on the solutions of the shallow water equations
on a sphere which consider a variety of methods and give many results. We shall
only draw a comparison with a few other methods here which have also been
applied to the first test case in [13].

In [7] Malcolm applies a number of schemes to the shallow water equations
using the first test case of Williamson et al. The results presented were obtained
using a similar latitude/longitude grid to that used here. Note that in the plots
the values of the height have been scaled up by 1000. The results in figure 11
were obtained using the unified model advection scheme. The contour lines lie
in the range 700-1700, corresponding to the presence of negative values for the
height using the normal scale. This is a result of the oscillations present. Better
solutions were obtained using the 4th order Heun scheme. Figure 12 shows the
solution on a 96 x 73 grid. The peak value has only decreased slightly, again
negative values have appeared due to the oscillations occurring along the path
that the bell took, and the profile steepened on the left hand side. Using a
288 x 217 grid the results were improved corresponding to the maximum and

minimum height values being raised, and the profile being symmetric about the
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line ¢ = 37/2. Further results were obtained from Heun’s scheme incorporating
the use of a filtering technique and using both 4th and 6th order diffusion terms.
Shown also are the results from using a semi-lagrangian code. We quote in table 1
below the maximum and minimum values attained for the height profiles for some
different schemes on a 96 x 73 grid with a 30 minute time step. Included within

the table are some results obtained using a similar TVD scheme to that used here.

Scheme Max. height | Min. height

Heun scheme 1937.5 836.4

Heun scheme + 4th order diffusion 1707.3 955.1

TVD (superbee) 1739.5 1000.0

TVD (van leer) 1540.0 1000.0
Table 1:

In a publication by Heikes [5] a new model was presented for the shallow water
equations which solves the stream function/velocity potential form of the equa-
tions on a new grid. In the paper the results from this model were compared to
those obtained using the Arakawa-Lamb and NCAR spectral shallow water mod-
els (which both use regular longitudinal/latitudinal grids) on the Williamson et
al test cases. Figures 14 and 15 are the results from running the proposed model
and the Arakawa-Lamb model on the first test case. In both models elongation
of the profiles occurred in the direction of the flow. In this instance the solution

obtained using the NCAR model is identical to the initial conditions [6].
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5.2 Translation of the bell over the poles

The next part of the test is to send the profile over the poles. Because of the
need for a much smaller time step than before (in order to satisfy the stability
condition), the overall running time is increased, and so only 6 day runs will be
performed. With the values of u and v given with o = 7/2 this should carry the
bell over the North Pole and place the centre at (7/2,0).

Running the code on a 60 x 30 grid without any limiters gives figure 16. Here
the time step is 5s. From the stability condition, this value for At should have
given an unstable solution. However as a large amount of diffusion had already
taken place by the time the profile reached the pole, the values of Aqp at this
time were less than the initial values, and so as, a result of the diffusion, we
can get away with using a larger time step than the stability condition would
predicted. The results using a 96 x 73 are shown in figure 17,and as expected
there is an improvement on the solution shown in figure 16. Using the superbee
limiter we see again the squaring effect, and reduction of the diffusion. It is
apparent that the centre of the cone has not been conveyed to the equator. In
the results produced by Heikes [5] the profile is very similar in shape to the results

he obtained using o = 0
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Chapter 6

Conclusion

Roe’s method for the solution of a set of conservation laws was considered in chap-
ter 2. In chapter 3 we took the standard flux form of the shallow water equations
on a sphere, and through a series of manipulations transformed the equations
into a set of conservation laws. We then went on to apply the technique known
as operator splitting to decompose the system of conservation laws into two one
dimensional problems. We then proceeded to solve these equations numerically
using Roe’s scheme. A test case was then presented in chapter 4, the solutions
to which were shown in chapter 5.

From the results produced within this dissertation a number of important con-
clusions can be drawn. We saw that when Roe’s scheme was used in isolation the
solutions were very diffused. However the introduction of a flux limiter reduced
the effects of the diffusion dramatically. Of the limiters tried, Roe’s superbee
limiter gave the best results. The use of limiters introduced some new problems,
namely the exaggeration of squaring of the solutions and the need for a smaller

time step than when no limiters were used. In all cases the profile was seen to
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be stretched in the direction of the flow corresponding to different parts of the
solution travelling with different phase speeds. We found that a very small time
step had to be used to send the bell over the pole, because of the large wavespeeds
in the ¢ direction, so that the solution remained stable. The form of splitting
used to decompose the equation affected the quality of the solution, in particular
we saw that using Strang splitting gave better results than when the simpler form
of operator splitting was used.

From a comparison with some other methods we have seen that the problem
of the solution being stretched along the flow direction is a common problem to
many methods. Although Roe’s scheme is only first order and so very diffusive,
we were able to reduce this problem by using flux limiters, but not to the extent
that we could produce comparable results to some of the more accepted methods.
We saw that one of the major problems encounted with some other methods, the

presence of oscillations in the solution, was not a problem in this instance.

From the difficulties encountered with the small step size near the pole there

is an obvious need to use an implicit scheme to which the size of the time step

is not restricted by a stability condition, if a regular latitude/longitude grid is

to be used. Alternatively, perhaps the pole problem could be overcome by using

a non-regular grid where the grid points do not bunch together at the poles. It

might be possible to write an adaptive code which modifies the size of the time

step depending on the solution, so that at all times the maximum time step is

used that will satisfy the CFL condition. However, although that would produce
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a faster code when applied to this particular test case, it would not in practice be
more efficient for a general problem. So far only the advective part of the code
has been tested. To give a true evaluation of the methods performance further

testing is needed.
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Figure 3: o =0, 192 x 143, At = 900s

Figure 4: o =0, 96 x 73, At = 450s
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Figure 5: o =0, 96 x 73, At = 900s, Superbee

Figure 6: o =0, 96 x 73, At = 900s, Minmod
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Figure 7: a =0, 192 x 146, At = 450s, Superbee
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Figure 8: a = 0, 192 x 146, At = 450s, Minmod
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Figure 10: o = 0, 192 x 146, At = 450s, Strang splitting with Superbee
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Figure 12: Heun scheme: a =0, 96 x 73, At = 1800s
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Figure 13: Semi-lagrangian: o = 0, 96 x 73, At = 1800s
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Figure 14: TIG-2562: a =0, a.) Day 3, b.) Day 6, c.) Day 9, d.) Day 12.
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Figure 15: Arakawa-Lamb: a =0, a.) Day 3, b.) Day 6, c¢.) Day 9, d.) Day 12.
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Figure 16: o = 7, 60 x 30, At = 5s
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Figure 17: a = 7, 96 x 73, At = 1s
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