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Abstract

This dissertation describes a finite difference moving mesh method to model the dif-

fusion of a homogenous non reacting solvent through a porous material based on two

regions, for slow and superfast diffusion. These regions are joined at an interface posi-

tion. The slow and superfast regimes are governed by different forms of the nonlinear

porous medium equation. The numerical method, which is based on conservation, is

derived in detail and discussed. Velocities are calculated for spatial nodes on a 2-

dimensional radial mesh, and as a result the position and solution at the spatial nodes

are updated at each time step as the solvent spreads. The calculation of velocities

requires knowledge of the masses between adjacent nodes, which change with time.

The results of the numerical model are presented, the limitations of the success of the

model being dependent on temporal step sizes. Such moving mesh methods are useful

in helping to model the transport of contaminant species through soil/sand systems,

thus enabling the prediction of the fate of such contaminants in the environment.
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1 Introduction

The migration of contaminants or reactants through porous media is of critical impor-

tance for a wide variety of scientific and industrial processes. This process can include

both reaction with and without the porous media. 1 Contamination of soils and sands

for example, by liquid pollutants can result in those pollutants entering groundwater

systems, thus increasing the chance of harm to crops and ecosystems, and water sup-

plies to the public. It is important therefore to characterise such phenomena, and be

able to predict the fate of such species, dependent on porous media and pollutant type,

over a wide range of conditions. It is known that the nonlinear diffusion of unreactive

pollutants can be classified into slow, fast or superfast diffusion, dependent on the

characteristics of the diffusion coefficient in the porous medium equation. The diffu-

sion coefficient is often dependent on the saturation level of the contaminant species in

the porous medium, which drives the diffusion. This changes over time as the solution

spreads out through the voids.

This project looks at the concentration profile of a contaminant species of a partic-

ular initial concentration through a porous medium (of which there are many in the

environment, such as sands and soils) with time. The diffusion equation is of the

nonlinear type, and the type of diffusion changes at a particular distance away from

the initial point of contact with the solid, from slow to fast, to superfast diffusion,

as the saturation level / concentration of the species changes. We model this using

a finite difference moving mesh, by assigning a velocity to each positional node in

matrix, which changes with time, and then advancing those nodal positions and cal-

culating the new positions and concentrations at evenly spaced time steps. As mass

is not conserved within the separate slow and superfast regimes, we use mass fraction

conservation between positional nodes. The combined sum of the masses in both the

slow and fast sections remain constant.

1A porous medium is a solid matrix, or framework containing pore / voids. They are often characterised
mainly by their porosity, or void fraction, which is the fraction of empty space within the solid matrix.
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1.1 Background to diffusion through porous media

Migration of non reacting liquids through porous media is driven by the capillary

forces at the liquid front. The liquid passes through voids between the solid particles

within the packed solid matrix. The liquid will travel through large gaps between

the particles, and narrow gaps where the particles are in near contact. At low liquid

concentrations, as the liquid spreads out through the matrix, the capillary structure

breaks down, and the liquid passes over the rough surfaces of the particles. The thin

layer of liquid between particles are referred to as capillary bridges, as shown in Figure

1.

Figure 1: Porous medium structure, illustrating varying particle shape and size, and location
of thin capillary bridges (red bars) between particles. Thin layer of liquid on surface roughness
or particles where not in contact, at low concentration (not shown).

The rough surfaces can be well characterised by techniques such as scanning electron

microscopy (SEM), atomic force microscopy (AFM) for nanoscale measurements, and

surface profilometry, of the stylus or optical type. The free space percentage, or void

fraction can be determined by a variety of methods, such as optical techniques, imbi-

bition methods (full wetting of the voids), mercury injection methods, gas expansion

methods and density methods. More details on these methods, and other characteri-

sation requirements such as permeability, and specific surface area can be found in [1].

The classification of nonlinear diffusion can be subdivided into slow, fast, or superfast

diffusion, dependent of the value of m in the nonlinear diffusion equation, where

∂u

∂t
=

∂

∂x

(

um∂u

∂x

)

+ s(x),
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is the porous medium equation (PME) in 1D Cartesian coordinates. It can be generally

stated as
∂u

∂t
=

∂

∂x

(

D (u(x(t), t))
∂u

∂x

)

+ s(x),

where D(u(x(t), t)) is the diffusion coefficient (which, when D(u) = um, is the PME).

For radial diffusion, the nonlinear PME is given by

∂u

∂t
=

1

rd−1

∂

∂r

(

umrd−1∂u

∂r

)

+ s(r), (1)

where d is the number of dimensions. In this study we take d = 2. For both radial

and cartesian coordinates, s(x(t)) and s(r(t)) represent a source or sink term, such as

ingress of another source of liquid into the system, or evaporation of the liquid out of

the system respectively. In the case of this study, we do not consider any source or

sink terms, particularly since we assume that our migrating liquid is a non reacting,

non volatile liquid.

The transition of transport through porous media is very much dependent on the

saturation level of the solvent. This change in diffusion behavior can be very sharp as

detailed in the study by Lukyanov et al [2]. This transition is seen to occur at about

20% saturation for low saturation levels. The general classification of the "speed"

of non linear diffusion with respect to the value of m in equation (1), according to

reference [3] is

• linear: m = 0

• porous medium equation: m > 0

• fast diffusion: −1 < m < 0

• superfast diffusion: m < −1

In this report we look at the profile of concentration u(r(t), t) with time, where the

diffusive behaviour changes from slow to superfast diffusion. At this point the con-

centration (u) in the profile of u against r is 20% of its value at the central point

r = 0, where the solvent is "applied". This is in agreement with the observations of

reference [2]. We firstly calculate the position at which the diffusion regime changes,

at time t(0), then follow the profile in time using two joined moving mesh methods
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for slow (m = 1) and superfast (m = −3/2) diffusion. Where the concentration u(r)

is greater than 20% of u(r = 0), for m = 1, we present a self similar/analytic solution

for u(r(t), t), which is used to obtain the boundary values of the velocity (dr/dt), rate

(∂u/∂t) and gradient (∂u/∂r) of the positional node at the slow/superfast interface, in

order to set up a moving mesh method for the fast regime only. Applying a parabola

from this node out to the final node, furthest from the origin (where we can apply a

boundary condition to advance capillary action), we can then update the position of

the fast nodes using their velocities at equally spaced time steps to advance the mesh.

We can then find the solution values u at the new positions, making use of constant

mass fractions flowing across the boundary from the slow to superfast regime.

The study in reference [2] has provided an insight into the behaviour of non volatile

liquids at low concentrations, and how the liquid flows at such low saturation levels.

At low saturation levels, below 20%, Lukyanov et al [2] found that the spreading

regime changed. The study looked into the effect of low concentrations (less than 5µL)

of a nonvolatile organic solvent (non-volatile to ensure that there is no source/sink

term for liquid leaving or entering the region) through a well characterised sand 2.

The passage of the volatile solvent through the sand was monitored over time using

imaging techniques such as Micro X-ray Computer Tomography, Fluorescence Imaging

and Raman Microscopy. The imaging following the profile of the wetting front 3, is

shown in Figure 2.

2of known porosity and surface roughness.
3The wetting front is the region in the porous medium with a rapid downward decrease in water content,

at the wetted and dry interface.
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Figure 2: X-Ray Fluorencence Imaging to monitor progress of wetting front

It was seen that for a very small concentration of solvent initially placed on the surface

of the sand, the spreading, over a period of 25 days, covered a volume of 1000 times

that of the original spreading volume at time t(0) for a porosity/void fraction of 30%4.

This indicated an average saturation level of approximately 0.55% 5.

Different liquid morphologies are seen around the solid particles at different levels of

saturation and at saturation levels of less than 8%, liquid bridges are formed at the

point of contact between particles, at which point the larger capillary areas, as shown

in Figure 3 collapse. Indeed, below a saturation level of 0.2%, cohesion is lost in the

system, and the bridge network fails between particles.

4Porosity is the fraction of total volume of a material that is free space.
5Saturation level s= volume of fluid phase i in sample

Total accessible pore volume in sample
.
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Figure 3: Structure of capillary areas between sand particles at saturation levels greater than
10%

This paper provided evidence, from an environmental pollution perspective, that small

concentrations of harmful solvents can travel long distances through packed soils/sands

over long periods of time, thus justifying the requirement to investigate the migration

of harmful contaminant species.

The transport of liquid through the porous media was deduced to be due to capillary

action at the surface-roughness scale of the individual particles, and indeed the to-

tal saturation of the sand is the interplay between that within the capillary bridges,

and that in the surface roughness around the particles. Generally, the flow obeys

a Darcy-like Law, where permeability is related to the geometry of the grooves [4].

In macroscopic modelling of the migration of the nonvolatile liquid, it was assumed

that the particles were perfect spheres, and that the wetted grooves within the surface

roughness of the particles were completely filled. Modelling results were then compared

to those obtained from experiments. A continuity equation was then generated

∂φs

∂t
+∇.q = 0,

where φ is the porosity, s the total saturation, and q is the flux, which, when com-

bined with Darcy’s Law and the gradient of the capillary pressure and liquid geometry

calculations for capillary pressure, results in a porous medium equation

∂s

∂t
= ∇.

(

sγ−1∇s
)

,
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following non-dimensionalisation, for saturation, distance and time. When comparing

to equation (1), γ = m + 1. This is known as superfast diffusion. In the standard

porous medium equation (which we will use for the slow section of our model), where

m > 1 in equation (3), the low saturation levels at the edge of the liquid delay the

onset of the wetting front, however (and in our model for superfast diffusion), for su-

perfast regimes, the velocity of the wetting front decreases over time as the saturation

level/concentration decreases. The results of the model are in agreement with exper-

iment, and for the characterised system with the organic solvent, trioctyl-phosphate

(TEHP) at low concentration (deposited on well characterised sand) the superfast dif-

fusion regime is said to hold for 0.5% < s < 10%. It was also shown that the wetted

volume, V fell on a power law with time, where V ∝ t0.75 as shown in Figure 4.

Figure 4: Migration of 11µL TEHP in well characterised sand, showing V ∝ t≈0.75, from
reference [2].

Aside from the migration of contaminants, the moving mesh method has been used

for biological problems, such as tumour growth as described in reference [5].
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1.2 Velocity based moving mesh method

This project involves the use of velocity based moving numerical mesh methods (specif-

ically in this case, a finite difference method), to investigate the time dependent migra-

tion / nonlinear diffusion of a contaminant species. Moving mesh methods have been

utilised for scientific applications, such as diffusion of heat, diffusion of contaminant

species through porous media (as in this study), and many biological applications,

such as migration of species, and advancing of tumours through tissue. They are also

known as Lagrangian methods, where the velocity of the nodal points in a discretised

domain are calculated for each time step, and these velocities are used to aquire fu-

ture positions of the nodes, and hence the solution values required at the next time

step. This velocity is therefore directly used in the time dependent PDE. Considering

the Lagrangian coordinate, x(t) in 3D, at time t, the velocity v(x, t) of the diffusing

species at a node in the dicretised domain is given by

v =
∂x

∂t
,

where x(t) is the position of the node within the discretised mesh at time t (each

node moves at velocity v(x, t) at time t). One of the main problems with moving

meshes is, however, for the mesh to become "‘tangled", where nodes start to overtake

one another, and this should be considered in the assignment of spatial and temporal

discretisation. A more in depth discussion into moving meshes, with theory, to solve

time dependent partial differential equations can be found in reference [6].

1.3 Overview of the project

The aim of this project has been to develop a moving mesh method for combined

slow and superfast diffusion, which is intuitive since at initial time, the concentration

profile (concentration u, or saturation s, as a function of distance from the central

point of application of the solvent) will, as distance increases from the central point,

decrease to a level of approximately less than 30% of the central concentration. At

this point, m decreases in the porous medium equation, and the diffusion regime will

move from slow, to fast m < 0, to superfast, m < −1 (where u ≤ 8%). This project

aims to "join" the two regimes at an interface nodal position, and we choose this to
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occur where the solution value for concentration (or saturation) is 20% of its maximum

value. As expected, the central node will not move, however, the other nodes in the

mesh will move with a velocity that changes with time. This is a first attempt at

finding a method to combine the regimes, requiring careful consideration of boundary

conditions, both at the central node, interface node, and final node, furthest from the

origin. A finite value is assigned to the solution at the farthest node from the origin.

We have already introduced the concept in this first chapter as to the rationale be-

hind studying the migration of contaminants through porous media, and why it is

important to develop predictive models to understand the fate of these contaminants,

and the different classifications of nonlinear diffusion dependent on saturation level of

the contaminant, (hence value of m). In Chapter 2 we consider slow diffusion, and

present a self similar solution for the porous medium equation via scale invariance. It

is this self similar solution with which we obtain our boundary values at the interface

between slow and superfast diffusion. We also use these interface boundary conditions

where we consider superfast diffusion only, with a flux entering the superfast regime.

By boundary values, we mean not just the position and solution at the boundary, but

the velocity of the interface node for all time.

In Chapter 3 we present methods and proposed algorithms for

1. A moving mesh method for slow diffusion in isolation, driven by conservation of

mass between nodes.

2. A moving mesh method for superfast diffusion in isolation, driven by the concept

of constant mass fractions between nodes, as mass is no longer constant, effec-

tively entering from the interface side (with what would be slow diffusion if we

were considering both regimes). We use the continuity of mass fractions in the

regime to update the total mass between nodes, making use of our knowledge of

the original mass between nodes at the initial time.

3. A moving mesh method for slow diffusion using mass fraction conservation, in

preparation for joining to the superfast diffusion regime.

4. A combined slow and superfast diffusion moving mesh, with use of constant mass

fractions.

9



In Chapter 4 we present the results of the moving mesh methods for both slow and

superfast diffusion in isolation for 2D radial diffusion, followed by the results for the

combined numerical method. In the case of the slow diffusion we show the results for

constant mass between spatial nodes. We discuss the stability and limitations on the

discretisation of time via a Lagrangian type Courant-Friedrichs-Lewy (CFL) condition

[7]. This condition prevents the spatial nodes from overtaking one another.

In Chapter 5 we draw some conclusions from the results, comparing the behaviour of

the slow and superfast regimes in isolation with the combined diffusion moving mesh

scheme.

In Chapter 6 we make recommendations for future study, drawing on complications

and limitations of schemes as a result of explicit finite difference methods.
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2 Generation of an analytic solution for slow diffusion

In this chapter we look for an analytic solution to the porous medium equation where

m = 1, by generating a self similar solution. We shall firstly describe the scale in-

variance applied to 2D radial diffusion, and follow this with the generation of the self

similar/analytic solution. This method is discussed in reference [8], and adopted in

1D Cartesian coordinates, where m = 4, in reference [9].

2.1 Scale invariance for slow diffusion

We consider the case where m = 1 and d = 2 in the nonlinear porous medium equation

(2)
∂u

∂t
=

1

rd−1

∂

∂r

(

rd−1um∂u

∂r

)

(2)

where d is the number of dimensions. We now apply a scaling transformation to

equation (2),

u = λγû, t = λt̂, r = λβ r̂, (3)

using the scaling parameter, λ, where α and β are constants. This transforms equation

(2) into the new non-dimensionalised variables û, t̂, and r̂;

λγ

λ

∂û

∂t̂
=

λ2γ−2β

r̂d−1

∂

∂r̂

(

ûr̂d−1∂û

∂r̂

)

. (4)

Therefore, equating both the left and right hand sides of equation (4),

γ − 1 = 2γ − 2β. (5)

To find γ and β we need two independent equations, and so we integrate equation (2),

∫ b(t)

0

∂u

∂t
rd−1dr =

∫ b(t)

0

∂

∂r

(

rd−1u
∂u

∂r

)

dr,

and apply the boundary condition

∂u

∂r
= 0, at r = 0,

11



and

u(b) = 0 at the boundary r = b(t).

This results in
∂

∂t

∫ b(t)

0

rd−1u dr = 0,

and so
∫ b(t)

0

rd−1udr = k, (6)

where k is a constant. Upon transformation of equation (6) into û, t̂ and r̂ we obtain

λβdλγ

∫ b(t)

0

r̂d−1ûdr̂ = λ0k,

thus generating a second equation in γ and β,

γ + 2β = 0. (7)

Therefore, solving equations (5) and (7)

β =
1

4
, and γ = −1

2
.

This results in a scale transformation

u = λ− 1
2 û, t = λt̂, and r = λ

1
4 r̂,

so

λ =
u1/γ

û1/γ
=

t

t̂
=

r1/β

r̂1/β
.

An in depth text on scaling methods and self similarity can be found in reference [11].

2.2 Generation of a self similar solution for slow, nonlinear diffusion

We now introduce two variables, φ and y, that are independent of λ, and which are

invariant under transformation equation (3). We then make φ a function of y, and

then transform as follows

φ =
u

tγ
=

û

t̂γ
,

12



y =
r

tβ
=

r̂

t̂β
.

With φ now a function of y, we can transform the left hand side of equation (2) to be

a function of φ and t,

∂u

∂t
=

∂

∂t
(φtγ)

= −tγ−1yβ
dφ

dy
+ φγtγ−1.

The right hand side of equation (2) is also transformed

1

r

∂

∂r

(

ru
∂u

∂r

)

=
1

ytβ
∂y

∂r

d

dy

(

ytβφtγ
∂y

∂r

∂u

∂φ

dφ

dy

)

,

=
t2γ−2β

y

d

dy

(

yφ
dφ

dy

)

,

where m = 1 and d = 2, in radial coordinates, to obtain

1

4

d

dy

(

y2φ
)

+
d

dy

(

yφ
dφ

dy

)

= 0

which, following integration gives

1

4
y2φ+ yφ

dφ

dy
= C,

where C is a constant of integration. If we assume that dφ
dy

= 0, when φ = 0, then

y

(

1

4
yφ

)

+ yφ
dφ

dy
= 0,

hence
y

4
+

dφ

dy
= 0.

Integrating
∫

dφ = −1

4

∫

ydy,

φ = −1

4

(

y2

2
+ d

)

,

13



where d is a constant of integration. Therefore

φ = A− y2

8
,

where A is a constant. We we can write

φ = A− y2

8
,

y2

8
≤ A.

φ =

(

A− y2

8

)

+

.

We now convert back to the original variables, (u(r(t), r(t), t));

u =

(

1√
t

(

A− 1

8

r2√
t

))

+

. (8)

Equation (8) is is known as the self-similar solution for 2D non-linear radial diffusion

(from a point source of solvent on the surface of a porous medium). This can be

applied to nonlinear diffusion cases where m > 0.

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

r

u(
r)

 

 
t=1
t=2
t=3
t=4

Figure 5: Self similar solution where m = 1 at t = 1, 2, 3 and 4
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Figure 5 illustrates the self similar solution, equation (8), where A = 2, for the original

non-linear 2D equation (2), where d = 2, m = 1. Four time steps are shown. It can

be seen that the profile gradually flattens over time and is symmetric about r = 0. In

this study we take the initial time, t0 = 1 to ensure a stable solution. Additionally,

without loss of generality, we assign A = 2.

3 A velocity based moving mesh method

In this section we consider the porous medium equation for both slow and superfast

diffusion in 2D radial coordinates

∂u

∂t
=

1

r

∂

∂r

(

umr
∂u

∂r

)

where m = 1 for slow diffusion, and m = −3/2 for superfast diffusion. We derive a

method to monitor the diffusion of a non volatile species over time, with boundary

conditions. We first consider the slow diffusion equation in isolation, in the region(r0(t),

rI(t)), applying boundary conditions

dr

dt
= 0,

∂u

∂r
= 0, at r0(t),

and

u(rI(t), t) =
1

5
u(r0(t), t) at rI(t),

connecting r0(t) and rI(t) with a zero net flux condition at rI(t) (a free boundary

condition)

rIuI
∂u

∂r

∣

∣

∣

∣

I

+ rIuI
dr

dt

∣

∣

∣

∣

I

= 0 at rI(t),

where dr
dt

∣

∣

I
is the velocity of the boundary at rI(t). We can show, using Leibnitz

Integral Rule that for any two interval points, rA(t), rB(t),

d

dt

∫ rB(t)

rA(t)

urdr =

∫ rB(t)

rA(t)

r
∂u

∂t
dr +

[

ur
dr

dt

]rB(t)

rA(t)

=

∫ rB(t)

rA(t)

r

(

1

r

∂

∂r

(

ru
∂u

∂r

))

dr +

[

ur
dr

dt

]rB(t)

rA(t)
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=

[

ru
∂u

∂r

]rB(t))

rA(t)

+

[

ur
dr

dt

]rB(t)

rA(t)

=

∫ rB(t)

rA(t)

(

∂

∂r

(

ru
∂u

∂r

)

+
∂

∂r

(

ru
dr

dt

))

dr (9)

Taking rA(t) = 0, rB(t) = rI(t), where I denotes the end node (where the interface

with the fast diffusion regime would be), we have

d

dt

∫ rI(t)

0

ur dr = 0 (10)

so the total mass is conserved.

3.1 A moving mesh method for slow diffusion

We define the velocities at points A and B implicitly by

d

dt

∫ rB(t)

rA(t)

urdr = 0 (11)

for any two nodes nodes rA(t) and rB(t), which is consistent with equation (10). Then

(

ru
∂u

∂r
+ ru

dr

dt

)∣

∣

∣

∣

rB(t)

rA(t)

= 0

from equation (9), for any points rA(t) and rB(t). Take rA(t)=0, and rB(t) = r(t),

then from equation (9), since u > 0

dr

dt
= −∂u

∂r
, (12)

and this is how the grid/mesh points will progress. From equation (11), the integral

between any two mesh points, A and B is constant for all time, that is

∫ rB(t)

rA(t)

ur dr = constant

Now we can advance the mesh in time.
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Algorithm for slow diffusion alone with mass conservation

Initially:

1. Define the initial condition everywhere to be

u(r) = 2− r2

8
at t0 = 1

2. Discretise the mesh ri(t) = r0(t) + i∆r, where ∆r are N uniform discretisations

i = 0, 1, . . . , N , across the domain at t0.

3. Calculate the initial masses between nodes using Simpson’s Rule bi =
∫ ri
r0
urdr,

between the origin at r0, and nodes i, for i = 0, . . . , N .

Then, at each time step,

1. Calculate the velocities from equation (12), approximating the gradient by suit-

able finite differences, for example, central differences:

∂u

∂r

∣

∣

∣

∣

i

≈ ui+1(t)− ui−1(t)

ri+1(t)− ri−1(t)
i = 1, . . . , N − 1.

2. Define the velocity of the final node at rN through linear extrapolation

vN = 2vN−1 − vN−2

or by using the one-sided difference

vN ≈ −uN − uN−1

rN − rN−1

.

3. Update the new positions at the next time step using the explicit Euler scheme

ri(t+∆t) = ri(t) + ∆t
dr

dr

∣

∣

∣

∣

i

,

for equally spaced time steps ∆t.

4. Update the solutions at the next time step using the new positions from step 3,

ui(t+∆t) =
bi+1 − bi−1

ri(t+∆t) (ri+1(t+∆t)− ri−1(t+∆t))
, for i = 1, . . . , N − 1.
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5. Calculate u at the origin by approximating the integral/mass between the origin

and the first mesh point at t+∆t,

∫ r1(t+∆t)

0

ur dr ≈ 1

4
(u0(t+∆t) + u1(t+∆t))

(

r1(t+∆t)2 − r0(t+∆t)2
)

= b1.

The value of b1 is constant for all time. Therefore

u0(t+∆t) =
4b1

r1(t+∆t)2
− u1(t+∆t)

as r0(t) = 0 ∀ t.

6. Finally, the value of uN(t +∆t) = 1
5
u0(t +∆t), from the boundary condition at

rN ∀ t.

Results are presented in Section 4.1.

3.2 A velocity based moving mesh method for superfast diffusion

We now discuss a suitable method to model superfast diffusion in isolation. In doing

this we additionally gain an appreciation of the differences in the structure of the

diffusion equation, the boundary conditions, and how we must use those boundary

conditions.

We assume that the inflow boundary receives an ingress of liquid mass originating

from the slow diffusion regime, and so, unlike the slow diffusion method with constant

mass between nodes in the mesh, we now have changing mass at each time step. We

therefore make the assumption that the mass fraction of the total mass in the fast

domain at each time step, between adjacent nodes, is constant.

If we denote the left hand boundary, which receives mass from the slow regime,by

rI(t), where I represents the interface, then we put

r0(t) = rI(t).

The domain is then rI(t) to rN(t) for N initial equally spaced nodes in thesuperfast

region.
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At rI , it is assumed that the boundary values are given by the self-similar solution

u(r, t) = u(0, t)/5. The initial conditions are also taken to be the solutions to the self

similar solution at ri(t). We start with the initial conditions

uI =
2

5
at t0 = 1

therefore from equation (8)

r0 =
8√
5

at t0 = 1.

Also, from the self similar solution, substituting t0 = 1 into the appropriate equations

∂u

∂t

∣

∣

∣

∣

I

=
(rI)

2

8
− 1 at t0,

and
∂u

∂r

∣

∣

∣

∣

I

= −rI
4

at t0.

We can also find an expression for the initial velocity of the slow/fast interface, rI(t),

from
du

dt

∣

∣

∣

∣

I

=

(

∂u

∂r

∣

∣

∣

∣

I

/ dr

dt

∣

∣

∣

∣

I

)

+
∂u

∂t

∣

∣

∣

∣

I

.

Since at the interface
du

dt

∣

∣

∣

∣

I

= 0 at time t,

then the velocity at the interface node is therefore given by

dr

dt

∣

∣

∣

∣

I

= − ∂u

∂t

∣

∣

∣

∣

I

/ ∂u

∂r

∣

∣

∣

∣

I

=
rI(t)

2t
− 4

rI(t)
√
t

at t. (13)

Due to the flux into the region at rI(t) (from what is the slow diffusion regime)

ru
∂u

∂r
+ ru

dr

dt
= 0 at rI(t).

There is an additional boundary condition at rN(t), that maintains/drives migration
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of the liquid.

ub = 0.01 at rb, t ≥ 0.

The total mass in the fast domain (rI(t), rb(t)), θfast, is given by (the total area under

the u− r curve)
∫ rb(t)

rI(t)

urdr = θfast(t)

In this problem θfast varies with time, as mass travels into the fast diffusion region.

Taking the time derivative, we obtain

θ′fast(t) =
d

dt

∫ rb(t)

rI(t)

ur dr

=

∫ rb(t)

rI(t)

r
∂u

∂t
dr +

[

ur
dr

dt

]rb(t)

rI(t)

=

∫ rb(t)

rI(t)

r

(

1

r

∂

∂r

(

rum∂u

∂r

))

dr +

[

ur
dr

dt

]rb(t)

rI(t)

=

[

rum∂u

∂r

]rb(t)

rI(t)

+

[

ur
dr

dt

]rb(t)

rI(t)

= rbub
∂u

∂r

∣

∣

∣

∣

b

− rIu
m
I

∂u

∂r

∣

∣

∣

∣

I

+ rbub
dr

dt

∣

∣

∣

∣

b

− rIuI
dr

dt

∣

∣

∣

∣

I

where we know ∂u
∂r

∣

∣

I
and dr

dt

∣

∣

I
from the boundary conditions, therefore

θ′fast(t) = rb

(

ub
∂u

∂r

∣

∣

∣

∣

b

+ ub
dr

dt

∣

∣

∣

∣

b

)

− rI

(

um
I

∂u

∂r

∣

∣

∣

∣

I

+ uI
dr

dt

∣

∣

∣

∣

I

)

. (14)

The boundary conditions at rb, for the superfast diffusion scenario are

u = ub and urv + umrur = 0 at r(t) = rb(t), t > 0,

where rb is the far right boundary in the superfast diffusion regime. The first term in

equation (14) goes to zero, therefore

θ′fast(t) = −rI

(

um
I

(

∂u

∂r

)∣

∣

∣

∣

I

+ uI

(

dr

dt

)∣

∣

∣

∣

I

)

for all t > 0. (15)

In order to calculate the mass fractions in the fast regime, we must first obtain the
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integrals of u from r0(t) to ri(t), where i = I(= 0), 1, . . . , N , for N equally spaced

discretisations at t0. We divide this integral by the total mass at t0, θfast(t0), between

rI and rb(= rN), to obtain the mass fraction (µi),

µi =
1

θfast(t)

∫ ri(t)

rI(t)

ur dr, (16)

where

θfast(t) =

∫ rb(t)

rI(t)

ur dr. (17)

The total mass θfast varies with time, as flux enters at the boundary rI(t). From

equation (16)

d

dt

∫ ri(t)

rI(t)

ur dr =
d

dt
(θfast(t)µi)

= θ′fast(t)µi (18)

Evaluating the left hand side of equation (18) for a general point ri(t), using Leibnitz’

Rule,

θ′fast(t)µi =

∫ ri(t)

rI(t)

r
∂u

∂t
dr +

[

ur
dr

dt

]ri(t)

r(t)

=

∫ ri(t)

rI(t)

r

(

1

r

∂

∂r

(

rum∂u

∂r

))

dr +

[

ur
dr

dt

]ri(t)

rI(t)

=

[

rum∂u

∂r

]ri(t)

rI(t)

+

[

ur
dr

dt

]ri(t)

rI(t)

= ri(ui)
m

(

∂u

∂r

)∣

∣

∣

∣

i

− rI(uI)
m

(

∂u

∂r

)∣

∣

∣

∣

I

+ uiri

(

dr

dt

)∣

∣

∣

∣

i

− uIrI

(

dr

dt

)∣

∣

∣

∣

I

.

So,

ri(ui)
m ∂u

∂r

∣

∣

∣

∣

i

− rI(uI)
m ∂u

∂r

∣

∣

∣

∣

I

+ uiri
dr

dt

∣

∣

∣

∣

i

− uIrI
dr

dt

∣

∣

∣

∣

I

= θ′fast(t)µi

= −rI

(

(uI)
m ∂u

∂r

∣

∣

∣

∣

I

+ uI
dr

dt

∣

∣

∣

∣

I

)

µi

from the definition of θ′fast(t), equation (15).

Rearranging to obtain a velocity for the spatial nodes in the superfast regime mesh,
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at time t, we obtain

dr

dt

∣

∣

∣

∣

i

=

(

uIrI
uiri

)

(1− µi)
dr

dt

∣

∣

∣

∣

I

+

(

(uI)
mrI

uiri

)

(1− µi)
∂u

∂r

∣

∣

∣

∣

I

− (ui)
m−1 ∂u

∂r

∣

∣

∣

∣

i

. (19)

Hence, calculating the velocity of the internal nodes at any time requires knowledge

of the boundary values at rI , i.e, uI ,
dr
dt

∣

∣

I
and ∂u

∂r

∣

∣

I
, making use of the self similar

solution. Using the previous equation (13), to recap

dr

dt

∣

∣

∣

∣

I

=
rI
2t

− 4

rI
√
t

at time t

and from our knowledge at the interface,

∂u

∂r

∣

∣

∣

∣

I

= −rI
4t

and
∂u

∂t

∣

∣

∣

∣

I

=
(rI)

2

8t2
− 1

t3/2
,

we can substitute these into expressions into equation (19) to obtain

dr

dt

∣

∣

∣

∣

i

=

(

uIrI
uiri

)

(1−µi)

(

rI
2t

− 4

rI
√
t

)

+

(

(uI)
mrI

uiri

)

(1−µi)
(

−rI
4t

)

−(ui)
m−1

(

∂u

∂r

)∣

∣

∣

∣

i

.

This is how the velocity of the spatial nodes, r(t) progress in the superfast diffusion

domain.

We now seek a suitable time-stepping method for the superfast moving mesh method,

and update the position of each spatial node ri by

ri(t+∆t) = ri(t) + ∆t
dr

dt

∣

∣

∣

∣

i

,

and the total mass θfast(t+∆t) by

θfast(t+∆t) = θfast(t) + ∆tθ′fast(t),

where θ′fast(t) is given by equation (15). We have expressions for both ∂u
∂r

∣

∣

I
and dr

dt

∣

∣

I

(derived from the self similar solution). So equation (15) becomes

θ′fast(t) =

{

(rI)
2uI

2t

(

(uI)
m−1

2
− 1

)}

+

(

4uI√
t

)

. (20)

We can now recover the solution for u(r(t+∆t), t+∆t) at the next time step, approx-
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imating equation (16) as

ui(t+∆t) = θfast(t+∆t)
µi+1 − µi−1

ri(t+∆t) (ri+1(t+∆t)− ri−1(t+∆t))
. (21)

The individual mass fractions (µi) do not change with time. The self similar solution

is used to calculate values of u(r, t) and the velocities of the spatial nodes, vi at time

t = 0, at what would be the boundary with the slow diffusion regime.

In the superfast region we can no longer use the self-similar solution, and fit a parabola

between the final node of the self similar solution/slow parabola, and the final node

in the superfast diffusion profile, where we have assigned a finite value of u(N, t) =

0.01. We give the solution at the final node this small value of u in order to ensure

the advancement of the fluid. In reality, where u(N, t) = 0 the capillary bridges in

Figure 3 would collapse and no longer exist, and therefore there would be no further

fluid advancement through the porous medium. The fluid would just coat the surface

roughness, and only be in contact with individual particles. Migration then eventually

stops.

We use the last value in the self similar solution to get dr
dt

∣

∣

I
at any time t.

3.3 Setting up the initial superfast profile using a quadratic.

At initial time, t0 = 1, we have values for the velocity, dr
dt

∣

∣

I
= vI at rI , and the

concentration uI(t) from the self similar / parabola solution. We select an initial spatial

step size ∆r, and the number of steps N . We then apply the boundary condition

uN(t) = 0.01 at rN = rI + (N∆r)

at initial time t0. We can generate the shape for the initial u(r, t0) profile by applying

a parabola between

uI(t0) =
2

5
at rI(t0) =

8√
5
.

This will enable us to calculate the values ui(t0), thus enabling the calculation of all

the mass fractions between rI(t0) and ri(t0), (µi) which remain constant for t > 0.
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The initial values of ui(t0) in the fast diffusion regime are given by

ui = uN + (uI − uN)

(

N∆r + rI − ri
(N∆r)2

)

. (22)

The total mass in the fast region, at t0 is therefore given by

θfast =

∫ rI+N∆r

rI

ur dr at t0,

which can be calculated using Simpson’s Rule. The mass fractions, µi are given by,

µi =
θi(t0)

θfast(t0)
,

where

θi =

∫ rI+i∆r

rI

ur dr at t0.

At any time t, the mass from position rI(t) to position ri(t) is given by

θi(t) = µiθfast(t)

where θfast(t) is derived using equation 17. Values of θi(t) are then used to calculate

the values of ui(t+∆t) using equation (21).

3.4 Algorithm for the superfast diffusion regime using constant mass frac-

tions

We can progress the superfast diffusion region in isolation following discretisation of

the mesh at t0, ri(t). The solution values for ui(ri, t) (at time t0) from the parabolic

initial profile) are calculated using the following algorithm. Initially:

1. For a domain rI(t0), rb(t), uniformly discretise the mesh using a spacing ∆r

ri = i∆r + rI at t0 = 1.

2. Define the initial values at t0 = 1

uI =
2

5
, rI = 8/

√
5,

dr

dt

∣

∣

∣

∣

I

= vI =
rI
2
− 4

rI
at t0.
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3. Define the boundary conditions at rI(t) at time t

uI =
2√
t
− rI

8t
, as given by the self similar solution

vI =
rI
2t

∣

∣

∣

I
− 4

rI
√
t
, as given by the self similar solution

4. Define the boundary conditions at rb(t)

ub = 0.01, um
b rb

∂u

∂r

∣

∣

∣

∣

b

+ ubrb
dr

dt

∣

∣

∣

∣

b

= 0.

5. Calculate the initial total mass under the superfast parabola using Simpson’s

Rule.

θfast =

∫ rb

rI

ur dr at t0,

and, additionally the masses between rI and ri, i = I, 2, . . . , N ,

θi =

∫ ri

rI

ur dr at t0

6. Then compute the mass fractions, µi, i = I, 2, . . . , N ,

µi =
θi

θfast
at t0.

Then, at each time step,

1. Calculate the velocity of the internal nodes, vI(t) using the expression derived

from the constant mass fraction approach, using previous equation (19).

2. Calculate the velocity of the end node at time t, vb(t) using linear extrapolation,

utilising the calculated velocities for the previous two spatial nodes at t,

vN

(

=
dr

dt

∣

∣

∣

∣

N

)

= 2vN−1 − vN−2, where N is the number of discretisations.

3. Update the position vector of the Ith node at t + ∆t, using the velocity of the

previous node, vi(t) and the explicit Euler method.

ri(t+∆t) = ri(t) + vi(t)∆t, i = 2, . . . , N
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4. Compute the new total mass from rI(t+∆t) to rN(t+∆t) using θ′fast(t) calculated

from Equation (20), and explicit Euler method.

θfast(t+∆t) = θfast(t) + (θ′fast(t))∆t

5. Calculate the new partial masses from rI(t+∆t) to ri(t+∆t) using

θi(t+∆t) = µiθfast(t+∆t).

6. Use the new total partial masses, θi(t + ∆t) to calculate the updated values of

ui(t+∆t) using the previous equation (21) for i = 2, . . . , N − 1.

7. Calculate uI(t +∆t) using the self similar solution equation (8). The boundary

conditions specify that uN(t+∆t) = 0.01, for all t.

3.5 Moving mesh generation for slow diffusion with constant mass frac-

tions.

We now re-address the moving mesh method for the slow diffusion, m = 1 in equation

(1), but in the case where there is a loss of mass overall, as mass moves out of the

domain (into the superfast). We must therefore, as in the previous section for fast

diffusion, adopt the use of constant mass fractions between spatial nodes.

We discretise the r axis up to the point rI(t). It is at this point that we will, in the

next section, attach the superfast diffusion regime. For the domain (r0(t), rI(t))

ri = r0 + i∆r i = 0, . . . , I

where r0 = 0 at the origin, and I is the number of equally spaced spatial discretisations.

The self-similar solution/new parabola is then used to calculate the values ui(t) at

initial time t0 = 1 up to the interface with the superfast regime at uI =
1
5
u0, as in the

case of the slow regime with mass conservation.

ui = 2− r2i
8
, at t0
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The boundary conditions at r0 = 0, t0 = 1 are

u0 = 2,

∂u

∂r

∣

∣

∣

∣

0

= 0,

dr

dt

∣

∣

∣

∣

0

= 0,

and for all time t > 0,

∂u

∂r

∣

∣

∣

∣

0

= 0, , (23)

dr

dt

∣

∣

∣

∣

0

= 0, , (24)

as, intuitively, the origin about which diffusion is symmetric, r0(t)=0.

Let us denote the position and solution at the interface between slow and superfast

diffusion as rI and uI respectively, at t0, where I is the spatial nodal identity. We

know from previous equations (25), (26), (27), and (28) respectively, that at t0 = 1 for

an initial discretisation ∆r = 1
4
√
5
,

rI =
8√
5
, (25)

∂u

∂r

∣

∣

∣

∣

I

= − 2√
5
, (26)

dr

dt

∣

∣

∣

∣

I

=
3
√
5

10
, (27)

∂u

∂t

∣

∣

∣

∣

I

=
3

5
. (28)

However we now only use the value of rI at time t0. The initial total mass in the slow

region at t0 is calculated for the integral

θslow(t0) =

∫ rI

r0

ur dr

The rate of change of mass θ′slow(t) overall in the region can calculated at time t using
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Leibnitz’ Integral Rule

θ′slow(t) =
d

dt

∫ rI(t)

r0(t)

urdr

=

∫ rI(t)

r0(t)

r
∂u

∂t
dr +

[

ur
dr

dt

]rI(t)

r0(t)

=

∫ rI(t)

r0(t)

r

(

1

r

(

∂

∂t
ur

∂u

∂r

))

dr +

[

ur
dr

dt

]rI(t)

r0(t)

=

[

ur
∂u

∂r

]rI(t)

r0(t)

+

[

ur
dr

dt

]rI(t)

r0(t)

= uI(t)rI(t)

(

∂u

∂r

)∣

∣

∣

∣

I

+ uI(t)rI(t)

(

dr

dt

)∣

∣

∣

∣

I

. (29)

and equations (23) and (24) from the boundary conditions at r0(t). If we consider a

general point ri(t) in the slow diffusion domain, then the mass fraction, µi of the total

mass from r0 to rI is given by

1

θslow(t)

∫ ri(t)

r0(t)

urdr = µi i = 0, . . . , I,

which is constant for all time. Therefore the rate of change of mass between r0 and ri

at time t is given by
d

dt

∫ ri(t)

r0(t)

ur dr = θ′slow(t)µi,

and, by Leibnitz Integral Rule,

d

dt

∫ ri(t)

r0(t)

ur dr =

∫ ri(t)

r0(t)

r
∂u

∂t
dr +

[

ur
dr

dt

]ri(t)

r0(t)

.

Therefore,

uiri

(

dr

dt

)∣

∣

∣

∣

i

− u0r0

(

dr

dt

)∣

∣

∣

∣

0

+ uiri

(

∂ui

∂ri

)∣

∣

∣

∣

i

− r0u0

(

∂u

∂r

)∣

∣

∣

∣

0

= θ′slow(t)µi.

Substituting in equation (29) for θ′slow(t), we obtain

uiri

(

dr

dt

∣

∣

∣

∣

i

+
∂u

∂r

∣

∣

∣

∣

i

)

− u0r0

(

dr

dt

∣

∣

∣

∣

0

+
∂u

∂r

∣

∣

∣

∣

0

)

= uIrIµi

(

dr

dt

∣

∣

∣

∣

I

+
∂u

∂r

∣

∣

∣

∣

I

)
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Therefore, since
dr

dt

∣

∣

∣

∣

0

= 0 and
∂u

∂r

∣

∣

∣

∣

0

= 0 at r0(t) = 0

dr

dt

∣

∣

∣

∣

i

=
uIrIµi

uiri

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

− ∂u

∂r

∣

∣

∣

∣

i

at time t, (30)

for nodes/positions r0 to rI−1.

It is now necessary to identify ∂u
∂r

∣

∣

I
and dr

dt

∣

∣

I
at the interface, at time t, and can

approximate them using central differences

∂u

∂r

∣

∣

∣

∣

I

≈ uI+1 − uI−1

rI+1 − rI−1

at time t,

and
∂u

∂r

∣

∣

∣

∣

i

≈ ui+1 − ui−1

ri+1 − ri−1

at time t,

or by one sided differences

∂u

∂r

∣

∣

∣

∣

I

≈ uI − uI−1

rI − rI−1

or
∂u

∂r

∣

∣

∣

∣

I

≈ uI+1 − uI

rI+1 − rI
,

and
∂u

∂r

∣

∣

∣

∣

i

≈ ui − ui−1

ri − ri−1

or
∂u

∂r

∣

∣

∣

∣

i

≈ ui+1 − ui

ri+1 − ri
.

The velocity of the nodes in the fast regime are calculated using equation (19) derived in

Section (3.2). The velocity of the interface node, dr
dt

∣

∣

I
is calculated from consideration

of a zero rate of change of flux across the interface between the slow and superfast

regimes, which we shall describe in the next section.

3.6 Calculating the velocity of the interface node, vI(t) for the combined

slow and superfast diffusion

In this section we derive a method to calculate the velocity of the spatial node at the

interface between slow and superfast diffusion. We consider the area under the plot

of u against r at time t, between rI−1 and rI in the slow regime, and between rI and

rI+1 in the superfast regime. The interface is shown in Figure 6.
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Figure 6: Identification of velocity of interface node between slow and fast diffusion regimes

There will be zero rate of change of mass as mass flows at the same rate into the

superfast regime as flows out of the slow regime, by the application of the continuity

equation at the boundary;

d

dt

(

1

θslow(1)

∫ rI(t)

rI−1(t)

ur dr +
1

θfast(1)

∫ rI+1(t)

rI(t)

ur dr

)

= 0. (31)

where θslow(1) and θfast(1) represent the total mass in the slow and fast regimes respec-

tively at time t0. The integral to the left of the boundary is given by

d

dt

1

θslow(1)

∫ rI

rI−1

ur dr =
1

θslow(1)

(

∫ rI

rI−1

∂u

∂t
r dr +

[

ur
dr

dt

]I

I−1

)

− 1

(θslow(1))2
dθslow(1)

dt

∫ rI

rI−1

ur dr, (32)
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and to the right it is

d

dt

1

θfast(1)

∫ rI+1

rI

ur dr =
1

θfast(1)

(

∫ rI+1

rI

∂u

∂t
r dr +

[

ur
dr

dt

]I+1

I

)

− 1

(θfast(1))2
dθfast(1)

dt

∫ r(I+1)

r(I)

ur dr. (33)

Within equation (32),

∫ rI

rI−1

∂u

∂t
r dr +

[

ur
dr

dt

]I

I−1

=

∫ rI

rI−1

r

(

1

r

(

∂

∂r
ur

∂u

∂r

))

dr +

[

ur
dr

dt

]rI

rI−1

=

[

ur
∂u

∂r

]rI

rI−1

+

[

ur
dr

dt

]

I

rI−1

= uIrI

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

− uI−1rI−1

(

∂u

∂r

∣

∣

∣

∣

I−1

+
dr

dt

∣

∣

∣

∣

I−1

)

, (34)

for slow diffusion, and for the superfast diffusion, within equation (33),

∫ rI+1

rI

∂u

∂t
r dr +

[

ur
dr

dt

]I+1

I

=

∫ rI+1

rI

r

(

1

r

(

∂

∂r
umr

∂u

∂r

))

dr +

[

ur
dr

dt

]rI+1

rI

=

[

umr
∂u

∂r

]rI+1

rI

+

[

ur
dr

dt

]rI+1

rI

= uI+1rI+1

(

um−1
I+1

∂u

∂r

∣

∣

∣

∣

I+1

+
dr

dt

∣

∣

∣

∣

I+1

)

− um
I rI

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

. (35)

We have expressions for both the velocity of the penultimate node in the slow region

dr
dt

∣

∣

I−1
and the velocity of the second node in the superfast region, after the interface,

dr
dt

∣

∣

I+1
defined previously

dr

dt

∣

∣

∣

∣

I−1

=
uIrIµI−1

uI−1rI−1

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

− ∂u

∂r

∣

∣

∣

∣

I−1

,

and

dr

dt

∣

∣

∣

∣

I+1

=
uIrI

uI+1rI+1

(1− µI+1)
dr

dt

∣

∣

∣

∣

I

+
um
I rI

uI+1rI+1

(1− µI+1)
∂u

∂r

∣

∣

∣

∣

I

− um−1
I+1

∂u

∂r

∣

∣

∣

∣

I+1

,
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from equations (30) and (19) respectively. So, substituting equations (32), (33) (34)

(35)into equation (31), the following expression is obtained for equation (31)

0 =
1

θslow(1)

(

uIrI

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

− uI−1rI−1

(

∂u

∂r

∣

∣

∣

∣

I−1

+
drI−1

dt

∣

∣

∣

∣

I−1

))

− 1

(θslow(1))2
dθslow(1)

dt

∫ rI(t)

rI−1(t)

ur dr

+
1

θfast(1)

(

uI+1rI+1

(

um−1
I+1

∂u

∂r

∣

∣

∣

∣

I+1

+
dr

dt

∣

∣

∣

∣

I+1

)

− uIrI

(

um−1
I

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

))

− 1

(θfast(1))2
dθfast(1)

dt

∫ rI+1(t)

rI(t)

ur dr. (36)

Following substitution of equations (30) for dr
dt

∣

∣

I−1
and (19) for dr

dt

∣

∣

I+1
,

0 =
uIrI

θslow(1)

(

1− µI−1 +
(uI + uI−1)(r

2
I − r2I−1)

4θslow(1)

)

∂u

∂r

∣

∣

∣

∣

I

+

[

uIrI
θslow(1)

(

1− µI−1 +
(uI + uI−1)(r

2
I − r2I−1)

4θslow(1)

)]

dr

dt

∣

∣

∣

∣

I

+

[

uIrI
θfast(1)

(

µI+1 +
(uI+1 + uI)(r

2
I+1 − r2I )

4θfast(1)

)]

dr

dt

∣

∣

∣

∣

I

+
uIrI
θfast(1)

(

1− µI+1 +
(uI+1 + uI)(r

2
I+1 − r2I )

4θfast(1)

)

∂u

∂r

∣

∣

∣

∣

I

,

where, in equation (36),

1

(θslow(1))2
dθslow(1)

dt

∫ rI(t)

rI−1(t)

ur dr =
1

(θslow(1))2
θ′slow(t)

(r2I − r2I−1)(uI + uI−1)

4

=
(r2I − r2I−1)(uI + uI−1)

4(θslow(1))2
uIrI

(

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

and

1

(θfast(1))2
dθfast(1)

dt

∫ rI+1(t)

rI(t)

ur dr = −
uIrI(r

2
(I+1) − r2I )(uI+1 + uI)

4(θfast(1))2

(

um−1
I

∂u

∂r

∣

∣

∣

∣

I

+
dr

dt

∣

∣

∣

∣

I

)

We therefore obtain an expression for the velocity of the interface node dr
dt

∣

∣

I

dr

dt

∣

∣

∣

∣

I

=
−(∂un

I /∂r
n
I )A

B
(37)
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where

A =
uIrI

θslow(1)

(

1− µI−1 −
(r2I − r2I−1)(uI + uI−1)

4θslow(1)

)

+
um
I rI

θfast(1)

(

(r2I+1 − r2I )(uI+1 + uI)

4θfast(1)
− µI+1

)

and

B =
uIrI

θslow(1)

(

1− µI−1 −
(r2I − r2I−1)(uI + uI−1)

4θslow(1)

)

+
uIrI
θfast(1)

(

(r2I+1 − r2I )(uI+1 + uI)

4θfast(1)
− µI+1

)

3.7 Combining the initial profile for slow and fast diffusive regimes at

initial time t0.

Now that we have expressions for the velocity of the spatial nodes in the slow diffusion

regime, equation (30), the superfast regime, equation (19) and the interface velocity,

equation (37), we can now model the combined diffusion scenario.

For initial profile at t0, the change in diffusion equation, where there is a change in

the value of m from 1 to −3
2
, can be seen at r(t0) =

8√
5

(Figure 7). The self similar

solution parabola is used for the slow diffusion profile at t0, equation (8), and this is

attached to the superfast parabola, given by equation (22).
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Figure 7: Combined slow and fast diffusion profiles at t0.

3.8 Generating an algorithm for the combined diffusion.

We now generate an algorithm to advance the initial profile described in Section (3.7).

Combining slow and superfast diffusion

For a mesh ri, i = 0, . . . , N ,

0 = r0(t) < ri(t) < . . . < rI < . . . < rN−1(t) < rN(t)

which is uniform at t0, with N nodes a distance ∆r apart, rN(t) being a moving

boundary. The interface node, rI(t) is the node at which the slow diffusion regime

changes to the superfast regime.

Initially

1. At t0, and given the boundary condition

uN(t) = 0.01,
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for all t, calculate the initial solutions ui(t0):

ui = 2− r2i
8
, 0 ≤ ri ≤ rI , i = 0, . . . , I.

ui = uN + (uI − uN)

(

N∆r + rI − ri

(N∆r)2

)

, rI ≤ ri ≤ rN−1, i = I, . . . , N.

2. At r0, the velocity v0(t) = 0, for all t

3. Calculate the initial total masses in both regions, as described in Sections 3.5

and 3.2 for slow (θslow(1)) and fast (θfast(1)) diffusion respectively,

θslow(t0) =

∫ rI

r0

ur dr,

θfast(t0) =

∫ rN

rI

ur dr,

4. Calculate the overall initial total mass Mtot, which is constant in time

Mtot = θslow(t0) + θfast(t0)

5. Calculate the individual initial masses, θi(t0) for both the slow and fast diffusion.

θi(t0) =

∫ ri

r0

ur dr, i = 0, . . . , I. for slow diffusion

θi(t0) =

∫ ri

rI

ur dr, i = I, . . . , N. for fast diffusion

6. Calculate the individual , constant mass fraction (µi) for both slow and fast

diffusion regions from the information at t0 for θi(t0),

µi =
θi(t0)

θslow(1)

, for slow diffusion, i = 0, . . . , I

µi =
θi(t0)

θfast(1)
, for fast diffusion, i = I, . . . , N.

Then, for each time step,

1. Calculate the velocity, vI of the interface node at rI using equation (37) in Section

(3.6),
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2. Calculate the velocity vi of the spatial nodes in the slow diffusion regime using

equation (30) in Section 3.5 for i = 1, . . . , I − 1.

3. Calculate the velocity vi of the spatial nodes in the superfast diffusion regime

using equation (19) in Section 3.2 for i = I + 1, . . . , N − 1.

4. Calculate the final velocity using linear interpolation at time t0

vN = 2vN−1 − vN−2

5. Calculate the updated mesh position at t+∆t, where ∆t is the time increment,

which is constant for all time, using explicit Euler time stepping.

ri(t+∆t) = ri(t) + ∆tvi(t), i = 1, . . . , N

6. Calculate the updated mass in the slow diffusion regime, θslow(t + ∆t), using

equation (29) to obtain the rate of change of mass (in the slow region)

θslow(t+∆t) = θ′slow(t)∆t+ θslow(t)

7. Update the mass in the superfast diffusion regime at time t+∆t

θfast(t+∆t) = Mtot − θslow(t+∆t)

as the total mass across the combined domain is constant for all time.

8. Calculate the updated solution values ui at t+∆t for the intermediate nodes

ui(t+∆t) =
θslow(t+∆t) (µi+1 − µi−1)

ri(t+∆t) (ri+1(t+∆t)− ri(t+∆t))
, i = 1, . . . , I − 1.

for the slow diffusion region, and

ui(t+∆t) =
θfast(t+∆t) (µi+1 − µi−1)

ri(t+∆t) (ri+1(t+∆t)− ri(t+∆t))
, i = I + 1, . . . , N − 1.

for the superfast diffusion region.
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9. From the boundary condition, the solution for the final spatial node is a constant

uN(t+∆t) = 0.01.

10. Calculate the solution at the origin r0,

u0(t+∆t) =
4θslow(t+∆t)µ1

(r2(t+∆t)2
− u1(t+∆t),

as described in Section 3.

11. Calculate the updated solution at the interface,

uI(t+∆t) =
u0(t+∆t)

5
.
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4 Results

This chapter contains the numerical results for the three diffusion cases

1. Slow with mass conservation,

2. Superfast with mass fraction conservation, and

3. Slow and superfast combined diffusion regimes.

In the first part we discuss the results of the slow diffusion using a moving mesh and

conservation of mass in 2d radial coordinates, and the limitations on the stability of

the scheme using different numerical methods to identify the solutions to the first and

last nodes along the discretised r axis, depending on mesh discretisation.

4.1 Slow diffusion with mass conservation, where m=1

We shall firstly address the scenario where we have only slow diffusion, with mass

conservation, as described in Section 3.1. Figure 8 shows the solution profile of u(r, t)

as function of spatial and temporal nodes, where ∆t = 0.001, and for 32 spatial nodes

at a separation of 1
4
√
5
.

When ∆t is increased to 0.011 we see that the solution profile (Figure 9) appears to

be unstable at the early spatial nodes, at early time. This can also be seen to be the

case in Figure 9 at the final spatial nodes, however the profile smooths out at later

time. Above ∆t = 0.011 the method fails, due to tangling.
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Figure 8: Numerical solution for ui, where ∆r = 1
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Figure 9: Numerical solution for ui, where ∆r = 1
4
√
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and ∆t = 0.011

We can can apportion the instability to the choice of ∆t. The scheme is only stable if

there is a Courant-Friedrichs-Lewy (CFL) condition applied to the numerical scheme,
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where, as previously mentioned, we have approximated the partial derivative ∂u
∂r

using

a central difference scheme
∂u

∂r

∣

∣

∣

∣

i

≈ uj
i+1 − uj

i−1

rji+1 − rji−1

The CFL condition in this Lagrangian context is

|(vi+1 − vi)∆t| < |ri+1 − ri|. (38)

For this slow, with constant mass diffusion scheme, this only applies where ∆t < 0.011,

i.e. intuitively, the distance moved (|(vi+1 − vi)∆t|) via the calculated velocities using

finite differences, must be less than that calculated by the difference in adjacent nodal

positions for that time step. Figure 10 shows the velocities calculated for the stable

scheme where ∆t = 0.001.
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Figure 10: Numerical solution for vi, where ∆r = 1
4
√
5

and ∆t = 0.001

It can be seen from Figure 10 that the nodal velocities increase further away from

the origin at r0 = 0, as concentration / saturation of species decreases, and that the

velocities, particularly those furthest from r0, decrease slightly with time.
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4.2 Superfast diffusion regime with constant mass fractions

In order to run a numerical test on the model we required an initial profile at t0, with

boundary conditions

u = 0.01 and urv + umr
∂u

∂r
= 0 at r(t) = rN(t).

The parabola from the start of the superfast diffusion regime at t0 is shown in Figure

11 and is given by equation (22).
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Figure 11: Initial profile for superfast diffusion regime, from r0 and t0 = 1. ∆r = 1
4
√
5
.

Each spatial node, at a general time t, progresses with the velocity vi. For a time step

of 2 × 10−5, and spatial step size ∆r = 1
4
√
5

(as was used for the slow diffusion with

constant mass fractions), the method is stable. A 3D plot of the numerical solution

to ui is shown in Figure 12.
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Figure 12: Numerical solution for ui, where ∆t = 2× 10−5 and ∆r = 1
4
√
5
.

Upon investigating ∆t however, it is found that instability occurs above ∆t = 5×10−5.

This can be attributed to that fact that we are using an explicit methods to update

the parameters within the superfast diffusion numerical model. The CFL condition is

therefore violated above this limit of ∆t.

Figure 13 shows the increase in nodal velocity (where the CFL condition is adhered

to) for for a time step of ∆t = 2 × 10−5. It can again be seen that over time, as was

the case for slow diffusion, that although the nodal velocity increases with distance

away from the origin, the velocity starts to decrease (Figure 14) at later times. It will

eventually be zero at the point where the capillary bridge network breaks down, due

to low u, and there is therefore, insufficient capillary bridge pressure to drive solvent

migration.
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Figure 13: Numerical solution for vi, where ∆t = 2× 10−5 and ∆r = 1
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Figure 14: Numerical solution for velocity vi against spatial node i for t0 = 1 to t(T ), T=total
number of time steps, ∆t = 2× 10−5 and ∆r = 1
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5
.

Figure 15 shows the increase in instability of nodal velocity as ∆t increases towards
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the limit of the CFL condition.
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Figure 15: Numerical solution for vi, where ∆t = 5× 10−5 and ∆r = 1
4
√
5
.

In the superfast diffusion scheme, there is a more stringent requirement on ∆t than in

the slow regime. Above ∆t = 5×10−5 the CFL condition is broken, and the numerical

method fails.

4.3 Combined slow and fast diffusion regime

In this final section of the results we discuss the finite difference moving mesh method

where we have joined the slow and superfast diffusion algorithms by calculating a

velocity for the interface node, as described in the Section 3.6. We have considered

that mass is no longer constant in both regimes, since it flows from the slow to the

superfast region. However, the mass fractions between all adjacent nodes throughout

the domain are forced to be constant.

The calculation of the velocity of the interface node vi(t) has proved successful in

simply glueing the two different regimes together, however it is by no means smooth,

as can be seen in the 3D plot of Figure 16 for a small time step ∆t = 2×10−5, and the

final plot of ui against ri in Figure 17. The velocity of the nodes progressing through

the fast regime is seen to dramatically increase, particularly at early times, as seen in
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Figure 18. The velocities of the nodes decrease with increasing time, and the velocity-

space-time profile flattens out. This is in keeping with the experimental observations

that as time progresses, the liquid furthest from the origin r0(t) will eventually stop,

when there is no longer any driving pressure from liquid in the capillary bridges. This

can be a long period of time, as described in reference [2].
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Figure 16: Numerical solution for ui, in the combined slow-superfast regime, where ∆t =
2× 10−5 and ∆r = 1

4
√
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at t0.
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Figure 18: Numerical solution for vi, where ∆t = 2× 10−5 and ∆r = 1
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at t0.

If the interface slope is approximated by a one sided finite difference approximation
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on either side of the interface, i.e

∂u

∂r

∣

∣

∣

∣

I

≈ uI − uI−1

rI − rI−1

on slow diffusion side of interface

and
∂u

∂r

∣

∣

∣

∣

I

≈ uI+1 − uI

rI+1 − rI
on superfast diffusion side of interface

as opposed to the central difference method across the interface

∂u

∂r

∣

∣

∣

∣

I

≈ uI+1 − uI−1

rI+1 − rI−1

,

little improvement is seen in the smoothness of the profile. It may be necessary to

change the resolution, i.e, decrease ∆r, on either side of the boundary.
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5 Discussion and Conclusions

In this section we discuss the implications and conclusions from the results.

This project has looked at the numerical modelling of both slow and superfast diffusion

through a porous medium in a two dimensional radial domain. The method has

considered only non volatile, non reacting species and explicit finite difference schemes

to approximate partial derivatives ∂u
∂r

. The project has looked at superfast diffusion

modelled by a moving mesh scheme based on constant mass fractions, where mass

enters the superfast domain from the left hand boundary condition, where a self similar

solution is used in the slow domain to determine the values at the interface.

The moving mesh finite difference method has proved successful in modelling the profile

of concentration of the species against space and time, however with limitations on

the time step, dependent on the CFL condition.

The method for modelling slow diffusion with constant mass over the domain has

proved successful, providing that ∆t < 0.011 for the specified ∆r = 1
4
√
5

at t0. This

avoids spatial nodes overtaking one another, thus ensuring that the CFL condition

(equation (38)) is met. For slow diffusion with constant mass between nodes, we

specified a boundary condition on the final node furthest from the origin rI(t),

u(rI , t) =
1

5
u(r0, t),

which, if the solvent was allowed to continue to migrate, would mark the start of the

superfast diffusion regime, with a flux entering the boundary from the slow region.

The interface marks a change in the value of m in equation (1) from m = 1 in the

slow region to m = −3/2 in the superfast region. We used the conservation of mass

to derive an expression at time t for the nodal velocities between the boundaries

vi = − ∂u

∂r

∣

∣

∣

∣

i

i = 1, . . . , I − 1,

which was approximated using using finite differences. The trapezoidal method was

successfully used to calculate the solution u0(t).

The method for modelling superfast diffusion with constant mass fractions has a more
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stringent ∆t requirement than the simple case of slow diffusion with contant mass.

For stability in this regime, it is required that ∆t < 5 × 10−5. This limitation is to

adhere to the CFL condition.

In this method the value of uI(t), at the left hand boundary of the domain, was

calculated using the self-similar solution, equation (8). The velocity vI(t) was also

derived from the self similar solution equation (13) . A central difference approximation

was used in the calculation of the velocities of the nodes, to approximate ∂u
∂r

.

Additionally, both methods are given more stability when linear extrapolation is used

to calculate the velocity of the final node in order to advance the mesh for the next

time step.

Finally we presented a method for approximating an overall combined slow/superfast

diffusion regime, where the value of m in the diffusion regime changed from m = 1 to

m = −3/2 at the interface. The method hinged on the determination of the velocity at

the interface node, which was calculated prior to the velocities of intermediate nodes in

both of the slow and superfast regimes. As in the case of the slow diffusion in isolation,

u0(t) was determined using the trapezoidal method. The join of slow and superfast

diffusion profiles at the interface was not smooth, regardness of whether central or

one-sided differences were used. It may be that the mesh size must be reduced/refined

in the interface region in order to improve accuracy.
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6 Recommendations for future work

Throughout the course of this study we have made a number of assumptions, one

of the main ones being that it is possible to model a transition between the porous

medium equation for the slow regime where m = 1, and for the superfast regime,

where m = −3/2. This change between m = −1 and m = −3/2, is in reality likely to

involve a gradual reduction of m as the saturation level of the solvent/concentration

of the solvent decreases. From a modelling perspective, it may be more realistic to

include a number of interfaces, say i = I1, I2, . . . , IR for R changes in m. As in the

algorithm for the combined diffusion in this study, it may be that a number of interface

nodal velocities then need to be calculated, prior to the velocities of the nodes in the

intermediate positions between the interfaces.

It has been seen throughout the results section, that the use of explicit finite dif-

ference method to approximate velocities vi(t) and solution values uI(t) has resulted

in limitations on the value of the time steps ∆t that can be used in the numerical

method. It has been shown that a CFL condition must be adhered to, in order to

ensure that "‘node overtaking"’ does not occur, at which point the method will fail.

It is therefore suggested that an implicit method be used for the time stepping in

order to avoid the "‘trial and error"’ method of determining the largest time step

that can be used before node overtaking becomes an issue. Further details of implicit

methods for moving boundaries can be found in reference [12]. This would also allow

us to take a larger, more practical time step, to reduce the computational time that

would be needed for very complex model problems, and avoiding the need to follow

the Lagrangian type CFL condition. In order to smooth out the solution profile at

the interface, and improve accuracy, it may be necessary to reduce/refine the mesh

spacings ∆r in the region around the interface. Indeed, a further development may be

to investigate a moving mesh finite element method. This is a commonly used method,

particularly for complex geometry systems, and further details can be found in [6], [10]

and [13], where the latter reference includes finite element methods for homogeneous

and inhomogenous solvents in porous materials.

In addition, practically there are a large number of physical systems in the environment

that would include gradual evaporation of the solvent from the porous medium (likely
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to involve a temperature and pressure dependence). A progression for this study could

therefore include another term in the porous medium equation that would change the

masses calculated between nodes with time. This could include evaporation rates at a

particular temperature. Also possible is the addition of another source term, whether

that be another species, or constant ingress of the solvent.

An additional progression would be to advance the moving mesh method from a 2

dimensional study to 3D. Looking at the studies such as those in [2], a proposed

model could be validated by a 3D fluorescence imaging techniques.
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