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Abstract

This thesis concerns the modelling of partial differential equations in population
dynamics and examines two approaches to the choice of meshes for the numerical
approximation of the equations. The first part describes a fixed-mesh approach
to the predator-prey Lotka-Volterra equations and applies it to a two-dimensional
temperature-dependent parasitism system. A climate function is used to incor-
porate the effect of climate change with the aim to explore the impact of ongoing
warming on the spatial distribution and community formation of the interacting
species. The second part concerns an adaptive approach to meshes for populations
with moving boundaries, internal and external. In particular, a velocity-based
moving mesh method based on conservation is applied to systems of competitive
species with moving boundaries by which species interact, arise or disappear.
The application of the method to epidemic models is also examined where the
spreading of the disease through the domain is modelled by a moving front. This
is achieved using a moving mesh technique governed by conservation in which the
masses of coexisting species are combined. We conclude that fixed mesh meth-
ods are adequate for many problems in population dynamics, but where there
are significant moving boundaries, as in evolving population domains, the mov-
ing mesh method based on conservation is an advantageous choice, as it allows
the accurate handling of the moving boundaries and the efficient treatment of
topological changes.
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Chapter 1

Introduction

Partial differential equations (PDEs) are fundamental to the modelling of natural
phenomena and are used in almost every field of science and engineering. PDEs
provide the means for tackling a vast and ever-growing range of real-world prob-
lems from the simple heat equation to systems describing financial models, to
weather forecasting or equations describing population dynamics. Consequently,
the desire to understand the solutions to these equations has always had a promi-
nent place in the efforts of mathematicians. Numerical approximation for such
models may sometimes be challenging, though greater understanding and in-
sights can be gained on the different characteristics of the phenomena as well as
providing valuable predictions.

Techniques for numerically approximating such equations are well established and
are subject to continual refinement and improvement. Throughout the years, sev-
eral sophisticated numerical techniques, such as finite difference or finite element
method, have been developed and used to solve PDEs. The basic idea of such
methods is that the space variables are discretized on a selected space mesh,
using finite-difference or finite-element approximations. In effect, in the partic-
ular case of time-dependent PDEs, the only independent variable remaining is
time and hence the resulting system of ordinary differential equations (ODEs) is
time-stepped to approximate the original PDE. These methods have been exten-
sively used to approximate a broad class of problems and have been proven to
be highly robust, and reliable. Considerations of such methods arise in regard
to their accuracy. To improve the accuracy one must decrease the spacing of
discretised nodes in the domain. Due to stability considerations, the time step
must be decreased in accordance with the increase in spatial nodes which results
in a highly computationally expensive scheme.
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These methods, referred to as fixed mesh methods, work very adequately, espe-
cially for problems where the solution does not exhibit a high degree of spatial
activity, but also for problems where regions of rapid variation of the solution
do not move in space when time evolves in which case a finer grid must be used
around these regions.

However, for certain phenomena in which the solution exhibits sharp moving fea-
tures like inner or outer travelling wave-fronts or emerging boundary and interior
layers, a fixed mesh method where the grid remains unchanged for the entire
calculation (for all time steps) can be very computationally inefficient as it would
require the use of a very fine grid throughout the space domain.

In such cases, having a mesh that moves with time is desirable to track these
features accurately without the computational expense of increasing the resolu-
tion everywhere. Methods of such an approach belong to the realm of adaptive
or moving-grid methods.

In the broad field of mesh adaptation there are three basic approaches: h-
refinement which includes the addition of extra mesh points around an area of
interest; p-refinement which involves the use of a higher-order polynomial in each
spatial node intervals to better approximate the values between the mesh points
and hence the solution; r-refinement which describes the dynamic movement of
existing mesh points to track a feature of interest.

The former two belong to the static category while the latter to the dynamic.
For the static methods, an initial mesh must be created on which the solution
and the equation are defined. During the calculation, the number of nodes in
the domain might differ as a new mesh is constructed, based on properties of a
certain function that measures the quality of the approximation. Interpolation
of the solution on a new mesh is then required and a new approximation to
the solution is constructed on the new mesh. The adjustment of the already
existing nodes, the insertion of new nodes and the interpolation of the dependent
variables on the new mesh are done at a fixed time. The continual redistribution
and interpolation lead to a slow computational scheme and, while static methods
have proven to be robust for problems with sharp or moving spatial transitions,
they can be very inefficient.

Dynamic methods, also known as moving mesh methods, require a mesh equation
which gives the nodal velocities. The number of nodes remains constant for all
calculations and existing nodes are relocated in the domain to better approxi-
mate critical regions. A mesh equation and the original differential equation are
often solved simultaneously for the physical solution and the mesh. Hence, read-
justment of the node number is not required nor continual interpolation. These
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features make moving mesh methods most appropriate for problems exhibiting
sharp spatial variations in the solution or at moving boundaries.

Velocity-based moving mesh methods have been developed through the years
which differ in the way the nodal positions equation is derived. In this thesis,
special attention is given to a specific type of moving mesh method where the
moving mesh equation is constructed using the concept of mass conservation. In
the context of population dynamics, mass refers to the total number of individuals
in a population. This approach involves assigning a local proportion of mass
within each patch of elements. Then the local “mass” of the species remains
constant in time as the solution evolves, implying that regions with increasing
density will have a denser mesh. The method is not only applicable to systems
which conserve global mass, a version of the method has also been developed for
non-mass conserving problems. This approach is similar to one of mass conserving
but instead of local proportions of mass, uses relative proportions of mass or
density.

The moving mesh method based on conservation has a very wide range of ap-
plications as the desired quantity does not have to be mass or density. Other
quantities, such as volume, concentration or temperature, may be appropriate
alternative choices.

In particular, the approach taken in this thesis is a one-dimensional finite dif-
ference version of the moving mesh finite element approach proposed by Baines,
Hubbard and Jimack [14]. This technique has very few studied applications,
particularly for population systems. In this thesis, we apply the velocity-based
moving mesh method of [14] to a range of moving boundary problems emerging
in population dynamics by which species arise, overlap or disappear. We mainly
concentrate on its application to one-dimensional spatial systems since they offer
greater scope for understanding the mechanism involved, and for analysis which
may be expanded to more general situations.

Although the application of the moving mesh method to a two-dimensional Carte-
sian coordinate space domain is not considered in the thesis, we do illustrate its
application to a two-dimensional radial case. We also solve a two-dimensional
Cartesian coordinate system with a fixed mesh method.

Population Models

The scope of this thesis is to examine the application of different numerical
schemes to equations regarding population dynamics. The time-dependent in-
teractions between modelling species are of great interest to ecologists. Starting
from the best-known set of equations, the predator-prey Lotka-Volterra equa-
tions, which were first derived in the 1920s [111] [165], mathematical modellers
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have extended this pair of equations to much more complicated systems which de-
scribe many more biological scenarios, other than the predator-prey relationship,
such as competitive species, symbiosis, disease models (SIR susceptible-infected-
recovered models) and many more. However, these sets of ordinary differential
equations do not consider spatial effects. The inclusion of a diffusion term was
first introduced by Conway and Smoller in [44] along with spatial dependence
giving rise to partial differential equations. This allowed the study of a vastly
increased range of phenomena, such as ecological invasions, the effect of habitat
geometry and size, coexistence, and the effect of non-homogeneous resource distri-
bution. Alongside the standard Laplacian diffusion of [44] describing the random
walk of species, advection terms have also been included in many population mod-
els which describe the directed movement of species towards favourable spatial
regions with better environmental conditions, giving rise to reaction-diffusion-
advection models.

In this thesis, we examine the numerical approximation of a variety of reaction-
diffusion(-advection) population models including a temperature-dependent predator-
prey model with directed movement based on species’ fecundity gradient (Chapter
3) and a model of two highly competitive species which are spatially segregated
and separated by a moving interface (Chapter 6). Moreover, we focus on a sys-
tem of two cohabiting species with moving boundaries where species compete for
the same resources (Chapter 7) and a SI(R) and a SIRV (susceptible-infected-
recovered-vaccinated) model with cross- and self-diffusion where the spread of
the epidemic is modelled through a moving front (Chapter 8).

The nature of the problem being solved indicates the correct choice of a numerical
technique, e.g., if the system being solved exhibits spatial variations.

The simulations in the thesis are novel and the illustrations of the results de-
rived from a range of different parameter choices indicate that the population
models and the numerical methods used are suitable to realistically model many
ecological relationships and real-world situations.

The first part of the thesis concerns a model suitable to describe many real-
life complications such as climate change and aims to answer a crucial ongoing
question in ecology; how global warming and increasing temperatures through
the years affect the patterns of coexistence of interacting species. The climate
function which is used to incorporate climatic influence in the model is general and
can be easily adjusted and adapted to many situations. The model and results
appear to be a good overarching starting point to understand the implications of
global warming to species.

The novelty of the second part of the thesis (Chapter 4 - Chapter 8) lies in the
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theoretical and numerical treatment of moving boundaries in population dynam-
ics as well as a combined mass approach for cohabiting species, which are not
standard in the numerical modelling literature. The emphasis of this part of the
thesis is on the role of the moving mesh method based on conservation in tracking
free and moving boundaries in population dynamics.

1.1 Outline
The thesis is structured as follows.

In Chapter 2 we provide a general background on the predator-prey models of the
literature and discuss the inclusion of different spatial effects in the model. We
particularly focus on a system describing a parasitoid-host relation. Parasitoids
are insects whose larvae develop by feeding on the bodies of their hosts, which are
usually other arthropods, often insects. Parasitoids are considered intermediate
between predators and parasites since like predators, they kill the host they
attack. The system is modelled by one-dimensional coupled reaction-diffusion-
advection equations with directed movement based on a fecundity gradient. This
extra velocity term (the advection term) can alter the direction of species dispersal
by accounting for both spatial heterogeneous environments, i.e., food resources,
and the species interactions. After carrying out a stability analysis of the model,
we provide a detailed procedure for the approximation of the system by two fixed
mesh numerical methods, the finite element and the finite difference methods. We
briefly discuss the stability considerations associated with the explicit integration
scheme and we proceed with the application of a semi-implicit finite difference
scheme to approximate the system which avoids such concerns.

In Chapter 3 we extend our model of Chapter 2 to two dimensions where we
also include the climatic influence by the use of a climate function affecting both
species’ movement and the logistic growth of the prey. Following the stability
analysis of the two-dimensional temperature-dependent model and the numerical
approximation, we provide illustrations of the results derived by gathering the
maximum temperatures observed in Spain and Portugal in 1950 and 2020 and
the temperature projections for the year 2050. The scope of this work is to
investigate how the parasitoid and host spatial distribution is affected by the
increase in temperature through the years. This work is a collaboration with Dr
Hélène Audusseau (Department of Zoology, Stockholm University) and Dr Reto
Schmucki (UK Centre for Ecology and Hydrology).

In Chapter 4 we provide the background to moving mesh methods with a par-
ticular focus on the moving mesh method based on mass conservation which will
be the main focus for the rest of the thesis.
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Following the discussion in Chapter 2 regarding the inability of the classical
Fickian diffusion to realistically reflect the species dispersal, in Chapter 5 we focus
on the Porous medium equation which provides the most widely used density-
dependent diffusion and we show some of its properties using simulations. We
then use the method described in Chapter 4 to numerically solve a two-cluster
population system with non-linear density-dependent diffusion. We consider both
the non-mass-conserving and mass-conserving versions of the two-cluster system.

Later in Chapter 6, the velocity-based moving finite difference method based
on conservation is applied to a one-dimensional two-species competition system
in which the competition is sufficiently strong to segregate the two populations
separated by a moving interface spatially. The model is implemented numerically
with a variety of parameter combinations, illustrating how the populations may
evolve over time. We conclude that the model and the method are likely to
be able to satisfy the requirements for modelling a wide variety of competition
systems. This chapter is based on the paper of Baines and Christou [11].

In Chapter 7 we introduce a new feature of the moving mesh method based on
conservation which considers the combined mass of the species. The combined
mass of the species in the system is the quantity which is preserved within each
patch of elements (or the relative combined mass in case of non-mass conserv-
ing problems). This approach is beneficial when dealing with coupled equations
where species have overlapping domains as it avoids the interpolation of the
species meshes at each time step and only one velocity equation is required as
the whole system is solved on a single mesh. Motivated by the highly competitive
system of Chapter 6, here we consider a two-competitive species system in which
species coexist in space but still compete for common resources. This system con-
sists of both moving external boundaries and moving interior interfaces by which
species spread out in the domain or disappear. The method is illustrated in this
one-dimensional competition system in which a range of parameters is explored.
We also extend our study to the two-dimensional radial case of the system. The
results of this chapter indicate that the methodology can be generalised for more
complex equations that more realistically describe species’ behaviour and evolu-
tion through time. This chapter is based on the paper of Baines and Christou.
[15].

Besides the classical Laplacian diffusion of Chapters 6 and 7 and the density-
dependent diffusion of Chapter 5, many modellers have advanced these systems
by the inclusion of advection terms to model species’ bias or directed move-
ment to more favourable parts of the domain. This motivates the study of a
SI(R) (susceptible-infected-recovered) model with a free boundary in Chapter 8
where we incorporate self-isolation and social distancing of individuals by self-
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and cross-diffusion. We again consider the concept of combined masses for ap-
plying the moving mesh finite difference method to the SI(R) model with Fickian
diffusion. We then demonstrate that the combined mass approach can also be
applied to systems consisting of more than two species by considering a SIRV
(susceptible-infected-recovered-vaccinated) system with density-dependent non-
linear diffusion.

Finally, in Chapter 9 we present our main conclusions. We briefly summarise
the different numerical methods used to approximate the population models of
this thesis and describe the strategy taken for the study of the systems. This
thesis provides readers with guidance on numerical implementations for the ac-
curate approximation of partial differential equations in population dynamics and
provides insights into additional terms which can be easily implemented in the
model to realistically describe different ecological phenomena. The results of the
thesis are general and can be refined in many different directions. We consider
the implications of our findings for the wider modelling of population dynamics.
Combining the knowledge into the different numerical techniques presented and
described in this thesis together with the theoretical understanding of the mod-
elling of species interactions ensures the use of an appropriate method for a given
problem. Finally, we suggest future work that could be undertaken to extend the
conclusions of this thesis.

1.2 Novel Material
The thesis contains the following novel contributions:

• A two-dimensional fixed mesh finite difference implementation of a reaction-
diffusion-advection parasitism system with climate change.

• A moving mesh finite difference method based on conservation (MMFD)
for the two-phase competition system derived by Hilhorst et al. [75].

• A numerical model for a two-cluster population system using the moving
mesh finite difference method.

• A novel approach to moving mesh based on mass conservation for cohabiting
species with coupled equations; the combined mass approach.

• An application of the combined mass approach using a finite difference
framework to a system of two competitive cohabiting species satisfying cou-
pled reaction-diffusion equations with overlapping domains.
Extension of the study to the two-dimensional radial case.
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• Approximate solution of an epidemic SI(R) numerical model with self-
isolation and social-distancing effects using the MMFD method based on
combined masses.

• Approximate solution of a reaction-diffusion-advection SIRV model with
density-dependent diffusion by the combined mass approach of the MMFD
method.
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Chapter 2

Population Dynamics/
Predator-Prey

Population dynamics provide both the basis for studying complex communities
and providing insights into many applied questions in ecology. Understanding
population dynamics is the key to understanding the relative importance of com-
petition for resources and predation in structuring ecological communities, which
is a central question in ecology [72]. This chapter gives a background on systems
describing population dynamics with a focus on the predator-prey relationship. A
simple predator-prey system described by ordinary differential equations in Sec-
tion 2.1 is followed by a discussion on spatial inclusivity (Section 2.3) resulting in
a diffusion-advection-reaction system in Section 2.5. Of special attention in this
study is a particular predator-prey system with directed movement based on a
fecundity gradient (ability to reproduce), which was first used by Grindrod [63] in
the context of competitive species. Stability analysis of the model is carried out
in Section 2.5.2 to obtain constraints on the parameter values in order to produce
stable steady states. Then in Section 2.6, the model is numerically approximated
by the explicit finite difference and finite element methods in a one-dimensional
domain and convergence analysis is carried out in Section 2.7 to obtain the rate
of convergence of each method. As is well-known, the numerical solution of ex-
plicit schemes becomes unstable unless the time step is severely restricted. We
therefore in Section 2.9 consider a semi-implicit scheme for the approximation of
the system which avoids such a constraint.
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2.1 Time-Dependent Predator-Prey
A classical predator-prey system can be written in the form

du

dt
= ur(u)− αvg(u, v)

dv

dt
= v(αεg(u, v)− d), (2.1)

where u and v are the population densities at time t of the prey and the predator,
respectively. The terms du

dt
and dv

dt
describe the rates of change of the population

densities in time, where from an ecological point of view the conditions u > 0
and v > 0 must hold. The function r(u) is the prey growth rate, and g(u, v)
is the functional response which describes how the temporal variation in prey
density affects the rate at which prey are killed by predators. The constant α
indicates the rate that the predator attacks prey. The functional response in the
prey equation describes how many prey are being killed instead of eaten, the
important factor from the point of view of prey being how many individuals are
being removed from the community. The consumption part (how many prey are
being eaten) is an important factor from the predator’s point of view, hence the
functional response g(u, v) being multiplied by the constant ε which describes the
rate of conversion of the hosts. The constant d is the per capita predator death
rate.

2.2 Functional Response
There are many different kinds of functional responses g(u, v) that have been
used over the years to describe predator-prey dynamics. In the book [158], some
of the well-known functional responses are listed and discussed. Functional re-
sponses can be classified into three categories, (i) prey-dependent, where the prey
alone determines the response, i.e., the functional response depends only on the
rate of change of prey density, (ii) predator-dependent where both the predator
and the prey affect the response, leaving aside the issue of predator cooperation
in hunting and subduing prey it is likely that predator encounters will lead to
antagonistic interactions: intraspecific interactions can affect the birth and death
rate of the predator as well as the efficiency of the predator in finding and killing
the prey, (iii) multi species-dependent where species other than the predator and
its prey influence the functional response.
Examples of functional responses used extensively over the years are the Bedding-
ton functional response [88, 56] which is classified as predator-dependent and the
Holling Type I-III [78, 77, 145, 100, 149, 107] and Ivlev-type [169, 89] which
are classified as prey-dependent. The Holling Type I gives a linear relationship
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between the rate of change of prey density and the consumption rate, Type II
(hyperbolic response) describes the effect when the gradient decreases as the prey
population increases (similar to Ivlev), and Type III (sigmoid response) is used
when the gradient first increases and then decreases with increasing prey pop-
ulation. Note that the functional response also describes the predator satiation
effect as at high prey population density the rate of prey consumption levels off
and the gradient of the graph approaches zero.
In this thesis, we are mainly interested in the well-known Holling type II which
is similar to Ivlev-type and takes the form

g(u, v) =
u

A+ u
, (2.2)

where A is the prey population size at which the growth rate of the predator
is half its maximum. Equation (2.2) describes the rate of prey consumption
by a predator which rises as prey density increases, but eventually levels off at
an asymptote at which the rate of consumption remains constant regardless of
increases in prey density. Holling type II functional response is widely used and
has stood up as the "null model" upon which much predator-prey theory has
been constructed [30].
The ordinary differential sets of equations, such as (2.1), do not consider spatial
effects. An important development was first made by Conway and Smoller in
1977 [45], where a diffusion term was included along with spatial dependence
giving rise to partial differential equations.

2.3 Spatial Variation
Most of the elemental components of ecology, extending from individual be-
haviour to species interactions, and population dynamics, exhibit spatial vari-
ation. Partial differential equations provide a means of combining both temporal
and spatial processes and have been widely used to illuminate the effects of spatial
variation on populations.

2.3.1 Fickian diffusion

The most simple form of modelling species movement through PDEs is the
reaction-diffusion heat equation, which assumes a homogeneous environment.
Such equations have the following form

∂u

∂t
= δ

∂2u

∂x2
+ f(u, x, t), (2.3)
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where u(x, t) is the population density at time t and space x, the diffusion coeffi-
cient is δ, and f describes the reaction (source/sink) terms. The second derivative
term represents random walk. In effect, the motility coefficient δ is constant and
determines the rate at which each species disperses through a spatial domain.
This diffusion term describes the movement of species from a region of high
concentration to a region of low concentration in a homogeneous environment.
However, in real life, species do not disperse randomly through space as does the
behaviour described by the diffusive term. Moreover considering a homogeneous
environment results in a very unrealistic model as species have the ability to sense
the changes in the environment and adjust their movement accordingly.

2.3.2 Movement based on individuals’ interactions

Although most applications of PDEs to spatial processes assume random diffu-
sion of individuals there are many studies, mostly theoretical, for addressing more
complex movement behaviour [122, 79, 36, 124]. For example, we can alter equa-
tion (2.3) so that it also includes interactions between conspecifics. Conspecifics
are individuals that belong to the same species. If animals are only either at-
tracted to one another or repelled from one another, then the sole diffusion model
(2.3) can be replaced by a biased random motion model through an aggregation
component ([68]), as in

∂u

∂t
= δ

∂2u

∂x2
+

∂

∂x

(
ku

∂u

∂x

)
+ f(u, x, t). (2.4)

The first term on the right-hand-side of (2.4) describes the random diffusion of
species where δ is the diffusion coefficient and the second term describes the
dispersal of species according to the sign of the constant k, which is a measure
of the tendency to move away from conspecifics when k > 0 and move towards
conspecifics when k < 0.
The same concept can be applied to species of different populations. For example,
an animal of another species with a population density, v say, that is attracted
or repelled by individuals of population u can be modelled by a term

± ∂

∂x

(
kv

∂u

∂x

)
.

These cross and self-diffusion terms have been used extensively in the context
of predator-prey modelling to describe the tendency of the prey to move away
from the predator and the attraction of the predator to move towards or chase
the prey [99, 54, 113, 136, 64]. Apart from the species interactions, that can
alter species dispersal, many organisms also modify their movement in response
to environmental heterogeneity.
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2.3.3 Movement based on fecundity gradient

The movement based on environmental heterogeneity is driven by features of the
physical environment. For example, individuals move to higher-quality neigh-
bouring areas depending on the state of the environment they momentarily oc-
cupy to increase their net rate of reproduction.
Animals who assess their physical environment can be modelled by [62, 148], as
in

∂u

∂t
= δ

∂2u

∂x2
− ∂

∂x
(uν) + f(u, x, t), (2.5)

where ν is the velocity in which the populations advect towards an optimal di-
rection.
Grindrod in [63] proposed a directed movement by which each species is moving
along a fecundity gradient. This extra velocity term accounts for both spatial het-
erogeneous environments, i.e., food resources, and the species interactions and is
solved by using additional equations as illustrated below. These additional equa-
tions express ν in terms of the species fecundity gradient as the directed velocity
of species (ν) describes the movement of species towards an optimal direction in
an effort to increase their fecundity gradient.
For example, let E be the net rate of reproduction per individual at x, at time t,
within a local population density, i.e.,

E(u, x, t) = average birth rate - average death rate,

which increases as the quality of the habitat increases.
The relationship between ν and E(u) is constructed with ν as a local average of
∂E
∂x

, i.e.,

− ϵ
∂2ν

∂x2
+ ν =

∂E

∂x
,

where ϵ (ϵ ≥ 0) is a small parameter which smooths any sharp variations between
ν and ∂E

∂x
. Note that −ϵ∂

2ν
∂x2 is the effective local average for smoothing which gives

some notion of imprecise knowledge of fitness gradients and helps regularize the
advective dynamics.
Hence by [63], an equation such as (2.5) assumes that an individual’s random walk
is biased by some ideal or optimal velocity ν. Then an individual with velocity
ν disperses deterministically so as to increase its expected rate of reproduction,
taking into account both overcrowding and the quality of the habitat. Therefore,
by taking random walks biased by ν, the population is, on average, dispersing
in an ideal direction. Using the law of population balance we can derive an
expression for the total velocity, say w, by which individuals are dispersing which
accounts for both the random walks and the directed movement.
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The law of population balance states that given a and b are the two outer bound-
aries,

d

dt

∫ b

a

u dx+ [uw]ba =

∫ b

a

f dx. (2.6)

where w is the velocity by which individuals are dispersing and f consists of
source/sink terms. Equation (2.6) expresses that the rate of change of the pop-
ulation u in the domain (a, b) plus the rate at which individuals leave or enter
the domain through the boundaries a and b must be equal to the rate at which
individuals are supplied directly into the domain.

Since the mass in (a, b) is not time-dependent,∫ b

a

∂u

∂t
dx = − [uw]ba +

∫ b

a

f dx. (2.7)

Using (2.5) we obtain,∫ b

a

∂

∂x

(
δ
∂u

∂x
− uν

)
dx = − [uw]ba . (2.8)

Performing the integration on the left-hand-side of (2.8) gives[
δ
∂u

∂x
− uν

]b
a

= − [uw]ba .

Choosing an anchor point such that the value of δ∂u/∂x−uν+uw vanishes leads
to the equation for the velocity

w = −δ
1

u

(∂u
∂x

)
+ ν. (2.9)

given u ̸= 0, where the minus sign indicates the direction.
Hence the velocity w per individual can be expressed as the sum of a random
dispersion velocity and a biased velocity.

Since f in (2.5) denotes the rate at which individuals are supplied to the popu-
lation at space x and time t due to births and deaths,

f(u, x, t) = uE(u, x, t).

Moreover, to simplify the solution procedure a potential function ϕ is introduced
such that ν = ∂ϕ

∂x
, where ϕ is a velocity potential of ν. Hence, equation (2.5)

becomes,
∂u

∂t
= δ

∂2u

∂x2
− ∂

∂x

(
u
∂ϕ

∂x

)
+ uE(u, x, t) (2.10)
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and the additional equation for the advection direction in terms of fecundity is
given by

− ϵ
∂2ϕ

∂x2
+ ϕ = E(u, x, t). (2.11)

In the next section, we show how the classical Fickian diffusion described in
Section 2.3.1 may be unsuitable to reflect a realistic dispersal of species in cases
where the population density is extremely high or extremely low and discuss how
a non-linear diffusion may be preferable to model species movement.

2.4 Density-Dependent Diffusion
As explained in Section 2.3.1, the classical theory of Fickian diffusion is based
on the assumption that individual movement is driven solely by a certain type of
random walk, in which the direction of flow is from regions of high concentration
to regions of low concentration. Consider the following diffusion equation in a
one-dimensional domain R,

∂u

∂t
=

∂

∂x

(
δ
∂u

∂x

)
+ f x ∈ R, t ≥ 0 (2.12)

which describes how the population density u(x, t) changes in time, where δ is
the constant diffusion coefficient and f denotes the reaction terms.

At the initial time
u = u0(x) ≥ 0 x ∈ R, t = 0.

As in Section 2.3.3, by the law of population balance the velocity w is given by

w = − δ

u

∂u

∂x
, (2.13)

(cf. (2.9)), given u ̸= 0, where the minus sign indicates the direction.
By (2.13), for a finite ∂u/∂x the diffusion velocity tends to infinity as u tends to 0,
which is unphysical. If the diffusive velocity implies that individuals disperse to
avoid crowding we would expect the diffusion velocity to decrease as u decreases.

This effect can be seen by supposing that u0(x) has compact support, i.e., u0 is
non-zero only inside a closed and bounded subset of R and zero throughout the
rest of the domain.
The solution of (2.12) is given, using the heat kernel, by

u(x, t) =
1√
4πδt

∫
R
u0e

−(x−y)2

4πδt dy, t > 0.
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Thus, if u0 is non-zero, then u(x, t) > 0 for all t > 0 throughout the domain R.
Therefore the support of u is equal to the whole of R (not only in the bounded
subset) for t > 0. Consequently, this means that a small number of individuals
must move over arbitrarily large distances in any time interval [0,∆t].

Therefore, while the Fickian diffusion is an appropriate model for many diverse
transport processes and has been used by many population dynamics modellers, it
is sometimes unsuitable, especially at extremely low or extremely high densities,
[63].

Many studies over the years [59, 120, 174, 24] have used non-linear density-
dependent diffusion as an alternative to the Fickian diffusion. For example,
the partial differential equation for the rate of change of the density u with a
density-dependent diffusion takes the form,

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
, (2.14)

with appropriate boundary conditions where D is a function satisfying

D(0) = 0, Du(u) > 0 for u > 0.

By the law population balance equation (2.7) and (2.14),

∂

∂x

(
D(u)

∂u

∂x

)
= − ∂

∂x
(uw) . (2.15)

Integrating (2.15) with respect to x implies that the velocity by which individuals
are moving in the domain with the density-dependent diffusion takes the form,

w = −D(u)

u

∂u

∂x
.

Depending on the choice of the density-dependent function D, the velocity will
not tend to infinity when u → 0, for example, when D = u (cf.(2.13)).

The use of a non-linear diffusion in population biology is becoming popular over
the years but still, the majority of modellers use a linear diffusion to describe
species dispersion mainly due to the easier application and the similar effect
to the non-linear diffusion. Thus the following population system considers the
standard Fickian diffusion to describe species diffusion.

Having described how spatial variation can be incorporated in the equations for
modelling species evolution we apply equations (2.10) and (2.11) in the content of
a one-dimensional predator-prey model with Holling type II functional response.
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2.5 1-D Reaction-Diffusion-Advection
Predator-Prey System

The predator-prey system with directed species movement takes the form

∂u

∂t
= δu

∂2u

∂x2
− ∂

∂x

(
u
∂ϕu

∂x

)
+ uEu (2.16)

for the prey, and
∂v

∂t
= δv

∂2v

∂x2
− ∂

∂x

(
v
∂ϕv

∂x

)
+ vEv (2.17)

for the predator. Then, the expressions for the net rate of reproduction of the
two populations are

Eu(u, v, x, t) = r
(
1− u

K

)
− αv

A+ u
(2.18)

and
Ev(u, v, x, t) =

αεu

A+ u
− d. (2.19)

Finally, the equations which give the value of the directed velocity potentials ϕu

and ϕv are

Eu(u, v, x, t) = −ϵu
∂2ϕu

∂x2
+ ϕu (2.20)

and
Ev(u, v, x, t) = −ϵv

∂2ϕv

∂x2
+ ϕv, (2.21)

respectively. The constants ϵu and ϵv are very small parameters for smoothing
any sharp variations in Eu(u, v, x, t) and ϕu and Ev(u, v, x, t) and ϕv.

The one-dimensional system (2.16)-(2.21) is applied on a domain defined by [a, b]
where the zero Neumann boundary conditions

∂u

∂x
=

∂v

∂x
= 0, t > 0 x = a, b

are imposed, implying no migration across the boundaries.

This general predator-prey model is used in the thesis to model parasitoid-host
interactions. The definitions of the parameters in the model in the context of a
parasitoid-host system are described below which are strongly based on the paper
of Pearce et al. [127] with different notations. Pearce et al. [127] used an Ivlev
functional response to model parasitism whereas here we have chosen the Holling
type II functional response as described in Section 2.2. The host (in the absence
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of the parasitoid) is modelled as having logistic, density-dependent growth, with
the intrinsic growth rate denoted by r and the carrying capacity denoted by K.
Parasitism rate is denoted by α and ε is the predator conversion efficiencies of
hosts to parasites. The parasitoid is subject to intrinsic mortality rate d where A
denotes the half-saturation constant of the parasitoid. The motility coefficients
δu and δv of the two species are constants and determine the rate at which each
species disperses randomly through the domain. Definitions of the variables and
parameters are available below in Table 2.1.

Parameter/Variable Description
u, v Population density
δu, δv Diffusive parameter
r Intrinsic growth rate for prey
K Carrying capacity for prey
ε Parasitoid conversion efficiencies of hosts to parasitoids
α Parasitism rate
d Intrinsic mortality rate of parasitoids

ϕ1,2 velocity potential of ν (see (2.9))
A Predator half-saturation constant

Table 2.1: Model variables and parameters for the parasitoid-prey model defined
by (2.16)-(2.21).

In the next section, we carry out a stability analysis for the system (2.16) and
(2.17). We first non-dimensionalise the equations to simplify the system and
interpret complex interactions of variables. Then, we find the biologically relevant
equilibrium points of the movement-free version of the system (2.16) and (2.17)
and we present some results on the stability of equilibria and the existence of
Hopf bifurcation through numerical simulations.

2.5.1 The dimensionless model

It is much more transparent to work with equations that have been scaled to
non-dimensional form. Thus we define the following non-dimensional variables:
x̂ = x/χ, t̂ = t/τ, û = u/U, v̂ = v/U, ϕ̂i=u,v = ϕi=u,v/Φ (where U is a
normalising density and Φ is a normalising velocity potential ϕu,v) in the system
(2.16) and (2.17) which gives the following dimensionless equations.

Substituting the above non-dimensional variables and setting Φτ/χ2 = 1 and
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rτ = 1, the non-dimensional form of the equation (2.16) is given by

∂û

∂t̂
= Du

∂2û

∂x̂2
+
( ∂

∂x̂

(
û
∂ϕ̂u

∂x̂

))
+ û
(
1− û

)
− s1 ûv̂

z + û
, (2.22)

where s1 = α/r, Du = δu/rχ
2, z = A/K.

Rewriting equation (2.17) in terms of the dimensionless variables gives the non-
dimensional form

∂v̂

∂t̂
= Dv

∂2v̂

∂x̂2
+
( ∂

∂x̂

(
v̂
∂ϕ̂v

∂x̂

))
+

s2 ûv̂

z + û
− βv̂, (2.23)

where Dv = δv/rχ
2, s2 = αε/r, β = d/r.

Hence, the dimensionless expressions for ϕ̂u and ϕ̂v are as follows.
For ϕ̂u (2.20), by substituting the expression for Êu(û, v̂, x̂, t̂) from the dimen-
sionless equation (2.22) and since Φτ/χ2 = 1 and rτ = 1 gives

1

κ

(
1− û

)
− m1 v̂

z + û
= − ϵu

χ2

∂2ϕ̂u

∂x̂2
+ ϕ̂u,

where κ = rχ2 and m1 = α/r2χ2.
Similarly for ϕ̂v (2.21) we have

m2 û

z + û
− γ = − ϵv

χ2

∂2ϕ̂v

∂x̂2
+ ϕ̂v,

where m2 = αε/r2χ2 and γ = d/r2χ2.
Hence, the dimensionless parameters are

s1 = α/r, Du = δu/rL
2, Dv = δv/rL

2, s2 = αε/r, z = A/K, β = d/r,

m1 = α/r2χ2, κ = rχ2,m2 = αε/r2χ2, γ = d/r2χ2.
(2.24)

2.5.2 Stability analysis

In order to provide guidelines on the appropriate choice of parameters for the
numerical simulation of the full reaction-diffusion-advection system, it is impor-
tant to consider the local dynamics of the system, i.e., the properties of (2.22)
and (2.23) without diffusion and advection terms. Hence, we determine the be-
haviour of the movement-free version of equations (2.22) and (2.23) by setting
space derivatives equal to zero, giving

du

dt
= u

(
1− u

)
− s1uv

z + u
= F (u, v) (2.25)
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dv

dt
=

s2uv

z + u
− βv = G(u, v). (2.26)

To simplify notations, hats (ˆ) are omitted from now on.
It is, naturally, the dynamics in the biologically meaningful region u ≥ 0, v ≥ 0
that are of interest. We obtain the equilibrium states of the spatial homogeneous
equations (2.25) and (2.26) by setting F and G equal to zero. Then, the local
asymptotic stability of each equilibrium point is studied by computing the Ja-
cobian matrix and finding the eigenvalues evaluated at each equilibrium point.
For the stability of the equilibrium points, the real parts of the eigenvalues of
the Jacobian matrix must be negative. By the equations (2.25) and (2.26), the
Jacobian matrix of the system is given by

Ji =

∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

 , (i = 1, 2, 3),

where i = 1, 2, 3 represent the equilibrium points (0, 0), (1, 0) and (u∗, v∗), re-
spectively.
There are three biologically relevant, non-negative equilibrium states including:

• the unstable trivial state, (0, 0), which represents the total extinction of
both species. The eigenvalues of J1 are 1 and −β implying that (0, 0) is an
unstable saddle point.

• the locally asymptotically stable host-only state, (1, 0), where the para-
sitoids become extinct and the hosts are spreading throughout the domain
at their maximum carrying capacity. The eigenvalues of J2 are negative if

β >
s2

z + 1
.

Otherwise (1, 0) is an unstable saddle point.

• the two-species coexistent state, (u∗, v∗), which represents the coexistence
of both hosts and parasites in the domain, where

u∗ =
βz

s2 − β

and

v∗ =
(1− u∗)(z + u∗)

s1
.
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Since the population density cannot be negative the third steady state is feasible
only if

0 <
βz

s2 − β
< 1. (2.27)

The unique positive equilibrium point (u∗, v∗) is locally asymptotically stable
provided

z > (s2 − β)/(s2 + β). (2.28)

See [137] for a brief overview of continuous dynamical systems.

We have observed that the equilibrium point (0, 0) is always unstable for posi-
tive parameters. Some kind of bifurcation may occur at (1, 0) but we focus on
the coexistence steady state (u∗, v∗). In the next section, we examine the Hopf
bifurcation near the coexisting equilibrium (u∗, v∗) by presenting some numerical
results to illustrate the outcomes which are beyond the theoretical finding.

2.5.3 Numerical simulations of the ODE system

We numerically approximate equations (2.25) and (2.26) with initial conditions
u(0) = 0.7 and v(0) = 0.5. We fix the following parameters:

β = 0.175, s1 = 0.875 and s2 = 0.35

while we take z as the control parameter. The values of β, s1 and s2 are chosen
based on the ones used by Pearce et al. in [127] for one parasitoid species where
r = 0.4, α = 0.35, ε = 0.4 and d = 0.07. For this set of parametric values, the
coexistence equilibrium point exists whenever 0 < z < 1 (see equation (2.27))
and is locally asymptotically stable for z > 0.33 (see equation (2.28)). Let us
define the critical value z0 = 0.33. We intend to show that equilibrium point
(u∗, v∗) undergoes a Hopf bifurcation when the parameter z crosses its critical
value z0 = 0.33.
We present Figures 2.1 and 2.2 as evidence of Hopf bifurcation at z = z0. It
is observed by Figure 2.1 that the system of equations (2.25) and (2.26) has a
stable positive equilibrium point (u∗, v∗) = (0.3751, 0.5359) for z = 0.375. Figure
2.1a represents the positive equilibrium that is locally asymptotically stable and
2.1b represents the phase-portrait of (u∗, v∗) = (0.3751, 0.5359) that is locally
asymptotically stable.
In Figure 2.2 we show that the coexisting equilibrium becomes unstable for some
z = 0.3 < z0. We observe that solutions of u(t) and v(t) oscillate around (u∗, v∗).
This represents the occurrence of a limit cycle and the destabilisation of coexisting
equilibria. Thus, Hopf bifurcation is verified for z < z0. Figure 2.2a represents
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the stable and periodic oscillations around the positive equilibrium (u∗, v∗) =
(0.3751, 0.5359) and the phase plane diagram Figure 2.2b represents the stable
limit cycle around (u∗, v∗) when z = 0.3 < z0 = 0.33. The stability of the
limit cycle is determined by the direction of the neighbouring trajectories. If the
neighbouring trajectories are approaching the limit cycle, as time increases, then
the limit cycle is stable. Otherwise the limit cycle is unstable if the trajectories
tend away from the limit cycle.
Hence from Figures 2.1 and 2.2 we observe that as we decrease the value of
the control parameter z, the coexistence of prey-predator changes from stable
equilibrium to stable oscillatory coexistence.
The existence of a limit cycle can also be confirmed using the Poincaré-Bendixson
theorem [115]. Based on the theorem one can prove that a closed orbit exists by
establishing a close region, say R, to be a closed bounded subset of the plane and
assuming that the vector field is continuously differentiable on this region. Then
R must not contain any fixed points. Finally, one must establish that there exists
a trajectory, say C, which is confined to R; that is, starts in R and stays in R for
all future time. A typical approach is to construct the plane of the system (2.25)
and (2.26) by looking at the nullclines (du

dt
= dv

dt
= 0) and construct a trapping

region R where the vector field along the boundaries is pointing inwards towards
R. Note that the theorem can not be applied to dynamical systems whose phase
space has three or more dimensions.
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(a) Time evolution. (b) Phase-portait.

Figure 2.1: Stable coexisting equilibrium (u∗, v∗) = (0.3751, 0.5359) for z =
0.375 > z0 for the system (2.25) and (2.26).
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Figure 2.2: Stable limit cycle surrounding the coexisting equilibrium (u∗, v∗) =
(0.3751, 0.5359) for z = 0.3 < z0 for the system (2.25) and (2.26).

In this section, we have carried out the model analysis of the movement-free ODE
system for a predator-prey model with Holling-type II functional response. We
have gained insights into the parameter values required to produce biologically
realistic behaviour by looking at the three non-negative equilibrium steady states.
Special attention was given to the coexistence state (u∗, v∗) where by choosing
parameter z as a bifurcation parameter, sufficient conditions for the existence of
Hopf bifurcation have been presented using numerical simulations. The condi-
tions derived in this section regarding the range of parameter values which must
be used to achieve a stable coexistence steady state will be used in the following
section where we numerically approximate the whole reaction-diffusion-advection
system of (2.16)-(2.21). We now look at numerical methods for the approxima-
tion of (2.16)-(2.21).

2.6 Numerical Techniques for the 1-D Diffusion-
Advection-Reaction Predator-Prey Model

For the numerical approximation of the one-dimensional predator-prey model
with directed movement (2.16)-(2.21), we use the finite difference and finite ele-
ment approximations. The two methods differ in both the domain discretization
and computation. The finite representation of a function in finite difference cal-
culations is considered by taking isolated values of the function at given points:
such an approximation is only defined at these points. In the finite element
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method, the function is represented as a combination of both points and simple
functions (such as low-order polynomials): this kind of function is both finite-
dimensional and defined at all points (nodes). The computations of the former
one are based on finite difference approximations to the governing differential
equations using a grid of spatial nodes while the finite element method is based
on the approximation of an equivalent governing integral relation, known as the
weak form, using finite segments. In the finite element method integration by
parts allows the possibility of lower order approximations like piecewise-linear
to be substituted. The implementation and computation of the finite element
method are more complicated compared to the finite difference as integration is
required followed by the formation of symmetrical and sparse matrices resulting
in more calculations per time step. In both methods, the use of a finer grid is
needed to increase the accuracy. The key advantage of the finite element method,
in higher dimensions, is that it has the ability to compute solutions on complex
geometries while finite difference basic form is restricted to handling rectangular
shapes. In the following sections, we give a brief description of the application of
these two methods to the predator-prey system followed by some results.

2.6.1 Explicit finite element

For the numerical approximation of (2.16)-(2.21) using the finite element numer-
ical technique, we first require the weak form of the system which is constructed
by introducing the test functions w(x), which are once differentiable and twice
integrable in (a, b). Since the approximation of (2.16) and (2.17) require ϕu and
ϕv respectively, we begin with equations (2.20) and (2.21).

Following the multiplication of the equations by the test functions, the application
of integration and the boundary conditions, the weak forms are as follows.

For ϕu, by (2.20),∫ b

a

w(x)r
(
1− u

K

)
dx−

∫ b

a

w(x)
αv

A+ u
dx = −

∫ b

a

ϵu
∂w

∂x

∂ϕu

∂x
dx+

∫ b

a

w(x)ϕu dx

and for ϕv from (2.21),∫ b

a

w(x)
αεu

A+ u
dx−

∫ b

a

w(x)d dx = −
∫ b

a

ϵv
∂w

∂x

∂ϕv

∂x
dx+

∫ b

a

w(x)ϕv dx.
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The weak form of (2.16) is given by∫ b

a

w(x)
∂u

∂t
dx = −δu

∫ b

a

∂w

∂x

∂u

∂x
dx+

∫ b

a

u
∂w

∂x

∂ϕu

∂x
dx

+

∫ b

a

w(x)

(
ru
(
1− u

K

)
− αuv

A+ u

)
dx

and for ∂v
∂t

by (2.17),∫ b

a

w(x)
∂v

∂t
dx = −δv

∫ b

a

∂w

∂x

∂v

∂x
dx+

∫ b

a

v
∂w

∂x

∂ϕv

∂x
dx

+

∫ b

a

w(x)

(
αεuv

A+ u
− dv

)
dx.

The integral of the reaction terms in the above equations is approximated using
the trapezoidal rule.
The weak formulations of (2.16) and (2.17) have reduced the derivative terms to
first order and are ready for lower-order finite element substitutions to be made.
After the domain discretization, the piecewise linear trial function approximation
substitutions are made giving a system of equations which can be written in
matrix forms and solved by linear algebra. After computing the stiffness, mass
and the weighted stiffness matrix (see [178] Section 3.2.1) the system is solved to
give ϕu,v and ut, vt. Then to update the population densities a time integration
scheme is required, e.g., the explicit Euler scheme

un+1
i = un

i +∆t un
ti
,

vn+1
i = vni +∆t vnti ,

(2.29)

where the subscript i denotes the x from the space discretization (i.e., xi = i∆x
where ∆x is the space interval) and the superscript n (and n + 1) denotes the
time (i.e., tn = n∆t where ∆t is the time step).
For the complete analysis and application of the finite element method see [152,
87].

2.6.2 Explicit finite difference

As described earlier at the beginning of Section 2.6, the finite difference method
uses approximations for the space derivative terms which are substituted directly
in the governing equations in order to reduce the system into equations of ordi-
nary differential equations.
We partition the domain in space using a mesh x0, ..., xI and in time using a
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mesh t0, ...., tN . We assume a uniform partition both in space and in time, so
the difference between two consecutive space points will be ∆x and between
two consecutive time points will be ∆t. Then un

i , v
n
i , ϕ

n
u(i)

and ϕn
v(i)

will repre-
sent the numerical approximation of u(xi, tn), v(xi, tn), ϕu(xi, tn) and ϕv(xi, tn),
respectively .
We begin by applying central approximation to the second order term in (2.20)
giving

−ϵu

(
ϕn
u(i+1)

− 2ϕn
u(i)

+ ϕn
u(i−1)

∆x2

)
+ ϕn

u(i)
= r

(
1− un

i

K

)
− αvni

A+ un
i

(2.30)

and for ϕv, the equation (2.21) becomes

−ϵv

(
ϕn
v(i+1)

− 2ϕn
v(i)

+ ϕn
v(i−1)

∆x2

)
+ ϕn

v(i)
=

αεun
i

A+ un
i

− d. (2.31)

Using a forward difference in time and a second-order central difference for the
space derivative of equations (2.16) and (2.17) gives

un+1
i − un

i

∆t
=δu

(
un
i−1 − 2un

i + un
i+1

∆x2

)
− 1

2∆x2

((
un
i+1 + un

i

)(
ϕn
u(i+1)

− ϕn
u(i)

)
−
(
un
i + un

i−1

)(
ϕn
u(i)

− ϕn
u(i−1)

))
+ run

i

(
1− un

i

K

)
− αun

i v
n
i

A+ un
i

(2.32)

and

vn+1
i − vni
∆t

=δv

(
vni−1 − 2vni + vni+1

∆x2

)
− 1

2∆x2

((
vni+1 + vni

)(
ϕn
v(i+1)

− ϕn
v(i)

)
−
(
vni + vni−1

)(
ϕn
v(i)

− ϕn
v(i−1)

))
+

αεun
i v

n
i

A+ un
i

+ dvni ,

(2.33)

respectively.

Following the domain discretization, the solution for ϕu and ϕv is obtained from
(2.30) and (2.31), respectively, using tridiagonal matrices. Having ϕu,v, u and v
we solve (2.32) and (2.33) for u and v at the forward time level.
The book [121] provides an excellent analysis of the finite difference method.
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2.6.3 Parameter values

We now proceed with deriving some simulations for the system (2.16)-(2.21) using
both finite difference and finite element methods. The choice of parameter values
used for the following simulations are strongly based on the paper of Pearce et
al. [127] where authors studied a system of four reaction-diffusion equations
describing the dynamics of two hosts and two parasites. In our system, prey
dispersal is considered to be greater than the predator dispersal and therefore
the parameters used for the simulations are

δu = 0.001,

δv = 0.003,

r = 0.4,

K = 250,

ε = 0.4,

α = 0.35,

d = 0.09,

A = 80,

and ϵu,v = 0.25.

(2.34)

The value of A is chosen in such a way that the condition for a stable coexisting
steady state (2.28) is satisfied, e.g., the condition for a stable coexisting steady
state is

z > (s2 − β)/(s2 + β), (2.35)

as given by (2.28), implying that

A

K
>

(
αε

r
− d

r

)
/

(
αε

r
+

d

r

)
(2.36)

from (2.24).
From the parameter values in (2.34)

0.32 > 0.22 (2.37)

and hence the condition is satisfied.

2.6.4 Results

For both methods, we discretized the spatial domain (a = 0, b = 1) into 81
equally spaced nodes (∆x = 0.0125) and use a time step value of ∆t = 0.01. The
same initial conditions are used as shown in Figure 2.3a and the results for both
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methods at t = 2 can be seen in Figure 2.3b. The results are shown in red and
blue colour for the finite difference and finite element method, respectively, while
solid lines show the results of the prey population and dotted and/or dashed
lines the results of the predator population. The results of the two methods at
t = 2 are very nearly equal, giving confidence that the two methods have been
implemented correctly.
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0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

p
o

p
u

la
ti
o

n
 d

e
n

s
it
ie

s

(b) t = 2.

Figure 2.3: Initial conditions used for both methods (a) and comparison of the
results of finite difference and finite element at t = 2 (b).

2.7 Convergence
We examine the orders of convergence q with respect to time and space for finite
difference and finite element method. We carry out a sequence of calculations
using the same initial data (Figure 2.3a) and the same value of ∆t/∆x, but with
successive refinement of the two meshes, so that ∆t → 0 and ∆x → 0. Since
these are explicit schemes we make sure that δu,v∆t/(∆x)2 ≤ 1/2 [121] (see the
end of this section).
Let N denote the number of nodes in the spatial domain, i.e., ∆x = 1/N . We
run the results for N = 40, 80, 160, 320, 640 while varying ∆t, i.e., ∆t = 3.2 ×
10−4, 1.6× 10−4, 0.8× 10−4, 0.4× 10−4, 0.2× 10−4 respectively. We assume

EN = A(∆x)q + B(∆t)p,

where EN is the error in the solution between the analytical and numerical solu-
tion, A and B are constants and q and p are the orders of convergence. Since we
are only accounting for the spatial errors we consider

EN = A(∆x)q (2.38)
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and
E2N = A(∆2x)q. (2.39)

Dividing (2.39) by (2.38) we get

q = − log2

(
E2N

EN

)
.

The analytical solution of the system is not available so we consider the exact
solution to be the approximation of the system by using N = 1280 and ∆t =
0.1× 10−4, assuming to be close to the actual exact solution of the problem.

The error is calculated for both the prey and predator solution (EN(u) and
EN(v)). Table 2.2 shows the results for the finite difference method. We ob-
serve an order of convergence of approximately 2 for both u and v solutions.
In the finite element results, in Table 2.3, we observe that the convergence rate
increases as ∆x decreases and approaches a convergence rate of 2. Interestingly
we observe a significant difference in the magnitudes of the errors in u between
the two methods. We can not make a certain conclusion for the reason of this
difference in magnitudes as the error calculations were constructed by assuming
the exact solution in each case to be the approximated solution with a denser
mesh of the corresponding numerical method. One possible reason could be the
build-up of round-off errors in the finite element case.

N ∆x ∆t EN(u) qu EN(v) qv
40 2.5×10−2 3.2×10−4 8.7×10−3 9.9×10−3

80 1.25×10−2 1.6×10−4 2.2×10−3 1.9 2.5×10−3 1.9
160 6.25× 10−3 0.8×10−4 5.4× 10−4 2.0 6.1× 10−4 2.0
320 3.125× 10−3 0.4×10−4 1.3× 10−4 2.1 1.5× 10−4 2.0
640 1.5625× 10−3 0.2×10−4 2.7× 10−5 2.2 3.8× 10−5 2.1
1280 7.8125× 10−4 0.1×10−4

Table 2.2: Relative errors for u and v with rates of convergence using the explicit
finite difference method.

29



N ∆x ∆t EN(u) qu EN(v) qv
40 2.5 ×10−2 3.2×10−4 0.5×10−1 0.1×10−1

80 1.25 ×10−2 1.6×10−4 0.2×10−1 1.2 4.5×10−3 1.6
160 6.25× 10−3 0.8×10−4 8.9×10−3 1.3 1.3×10−3 1.7
320 3.125× 10−3 0.4×10−4 2.9×10−3 1.6 3.6× 10−4 1.9
640 1.5625× 10−3 0.2×10−4 1.0×10−3 1.7 1.0× 10−4 1.8
1280 7.8125× 10−4 0.1×10−4

Table 2.3: Relative errors for u and v with rates of convergence using the explicit
finite element method.

As stated at the beginning of this section, these explicit numerical schemes are
restricted by conditions regarding the time and space meshes. A well-known
condition which describes the restriction on the time step value associated with
the space mesh size is given by

δu,v∆t/(∆x)2 ≤ 1/2. (2.40)

This condition is derived from the von Neumann stability analysis which examines
the stability of the finite difference method for the heat equation [121, 133].
In cases where the model includes an advection term, the stability analysis is
much more complicated and is beyond our scope (related work can be found
in [42, 76, 182]). Even though the stability condition from the von Neumann
analysis concerns the heat equation (diffusion term) we have used it throughout
the numerical calculations of the reaction-diffusion-advection system as a guide
for the time-step value to avoid instability in the solutions.

In the following sections, we numerically show that the explicit finite difference
scheme for a reaction-diffusion model is restricted by the stability condition (2.40)
and we concentrate on a semi-implicit scheme for the numerical approximation of
the reaction-diffusion-advection system (2.16)-(2.21) which avoids such restriction
on the time step value.

2.8 Time Integration Schemes
As shown above, the application of the numerical methods using the explicit
Euler time-stepping scheme is straightforward. As we shall show, however, the
numerical solution becomes unstable unless the time step is severely restricted,
hence, we proceed by considering other numerical methods which can avoid such
a restriction.
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For the following analysis, we neglect the advection term of the system (2.16)-
(2.21) (ϕu = ϕv = 0) giving the following set of reaction-diffusion equations

∂u

∂t
= δu

∂2u

∂x2
+ f(u, v, x, t) (2.41)

∂v

∂t
= δv

∂2v

∂x2
+ g(u, v, x, t), (2.42)

where f and g refer to the reaction terms of (2.16) and (2.17) respectively.
We discretize the domain by letting [a, b] be a closed interval and

[a = x1, ....xi−1, xi, xi+1, ....xN+1 = b]

be (not necessarily uniform) points (nodes) in the interval. We generate an ap-
proximation for equation (2.41) using the forward difference for the time deriva-
tive and the centred difference for the second-order space derivative, giving

un+1
i = un

i + Λ
(
un
i+1 − 2un

i + un
i−1

)
+ f(un

i , v
n
i ), (2.43)

where
Λ = δu

∆t

∆x2
.

Clearly, each value at time level tn+1 can be independently calculated from values
at time level tn, hence the name explicit.
If we carry out a calculation using (2.43), assuming no predator (i.e., v = 0)
we soon discover that the numerical results depend critically on the value of Λ,
which is related to the size of the time-step and the space-step.
In Figure 2.4 we show results corresponding to the parameter values (2.34) and
to the initial data

u0(x) =

{
100 cos

(
π

0.20
(x− 0.5)

)
, if 0.4 ≤ x ≤ 0.6,

0, otherwise.
(2.44)

Two sets of results are displayed. Both examples use the same number of nodes
N = 80, space step value ∆x = 0.0125. The first set uses ∆t = 0.026 which
satisfies the condition given in (2.40) while the second one uses ∆t = 0.027 for
which the condition in (2.40) is not satisfied. We observe that the latter exhibits
oscillation which grows gradually with increasing values of time t while the results
of the first case are smooth for all time simulations. This is a typical example of
instability or stability depending on the value of the mesh ratio Λ. The solutions
use time steps which are very nearly equal, but different enough to show the
qualitative difference in the numerical solutions.
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Figure 2.4: Results obtained for the data of (2.44) with the explicit method;
N = 80, ∆x = 0.0125.
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2.9 Semi-Implicit Scheme
The stability consideration associated with the explicit scheme ∆t ≤ 1

2δ
(∆x)2,

as shown in [121], is a severe restriction and implies that many time steps will
be necessary to follow the solution over a reasonably large time interval. Also,
if we need to reduce ∆x to improve the accuracy of the solution the amount of
work involved increases rapidly since we shall also have to reduce ∆t2. Moreover,
decreasing the value of ∆t implies more time steps which will lead to an increase
in the round-off errors.
Such a restriction can be avoided by the use of a backward time difference which
results in an implicit scheme. Even though an implicit scheme is unburdened of
stability considerations regarding the time step, the solution requires a slightly
more sophisticated calculation.
If we apply the backward time difference to the system (2.41) and (2.42),(instead
of the forward time difference as in (2.43)), the space difference remains the same,
we obtain the scheme

un+1
i = un

i + Λu

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
+∆t f(un+1

i , vn+1
i ) (2.45)

vn+1
i = vni + Λv

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

)
+∆t g(un+1

i , vn+1
i ), (2.46)

where
Λu = δu

∆t

∆x2
and Λv = δv

∆t

∆x2
.

Usually, an implicit scheme’s solution involves forming tri-diagonal matrices. For
example, the equation number i in the system only involves unknowns with num-
bers i − 1, i and i + 1, so the matrix of the system has non-zero elements only
on the diagonal and in the positions immediately to the left and to the right of
the diagonal. However, due to the nonlinearity of the reaction terms in (2.45)
and (2.46), as given by (2.16) and (2.17), a fully implicit scheme is clearly inef-
ficient for the approximation of the system (2.45) and (2.46). Hence we apply
a semi-implicit scheme to approximate the coupled equations. A semi-implicit
application in the context of the reaction-diffusion system of (2.41) and (2.42) is
given by

un+1
i = un

i + Λu

(
un+1
i+1 − 2un+1

i + un+1
i−1

)
+∆t

(
run+1

i

(
1− un

i

K

)
+

αun
i v

n+1
i

A+ un
i

)
(2.47)

and

vn+1
i = vni + Λv

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

)
+∆t

(
αεun

i v
n+1
i

A+ un
i

− dvn+1
i

)
. (2.48)
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This is an example of a semi-implicit scheme, which is not as easy to implement
as the explicit scheme described earlier. The equations (2.47) and (2.48) involve
three unknown values of u and v on the new time level n + 1, respectively. We
cannot immediately calculate the values of un+1

i and vn+1
i since the equations

involve the two neighbouring values un+1
i−1 and un+1

i+1 and vn+1
i−1 and vn+1

i+1 , which are
also unknown. Note also that equation (2.48) requires also the value of vn+1

i .
A solution of the system (2.47)and (2.48) can be derived by combining the two
equations and constructing a sparse matrix equation which is solved to update
the values of u and v at forward time levels. Note that operations of sparse
matrices using standard dense-matrix structures and algorithms are slow and
inefficient when applied to large sparse matrices as processing and memory are
wasted on the zeros. Hence, it is beneficial and sometimes necessary to use
specialized algorithms and data structures that take advantage of the sparsity of
the matrices.

In the context of the diffusion-advection-reaction system (2.16)-(2.21) the semi-
implicit approximations to the system take the form

un
i =

(
Υ
(
ϕn
u(i+1) − ϕn

u(i)

)
− Λu

)
un+1
i+1

+

(
1 + 2Λu +Υ

(
ϕn
u(i+1) − 2ϕn

u(i) + ϕn
u(i−1)

)
−∆t r

(
1− un

i

K

))
un+1
i

+
(
Υ
(
ϕn
u(i−1) − ϕn

u(i)

)
− Λu

)
un+1
i−1

+

(
∆t

αun
i

A+ un
i

)
vn+1
i

(2.49)

and
vni =

(
Υ
(
ϕn
v(i+1) − ϕn

v(i)

)
− Λv

)
vn+1
i+1

+

(
1 + 2Λv +Υ

(
ϕn
v(i+1) − 2ϕn

v(i) + ϕn
v(i−1)

)
−∆t

αεun
i

A+ un
i

+∆t d

)
vn+1
i

+
(
Υ
(
ϕn
v(i−1) − ϕn

v(i)

)
− Λv

)
vn+1
i−1 ,

(2.50)

where
Υ =

∆t

2∆x2
.

Equations (2.49) and (2.50) are constructed by grouping the coefficients and ϕu

and ϕv are evaluated from (2.30) and (2.31), respectively.

Hence the solution of the predator-prey system with directed movement using a
semi-implicit scheme can be derived from a sparse matrix equation which solves
both (2.49) and (2.50).
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2.9.1 Results

The time step is still limited by the requirement that the truncation error must
stay small, as shown in the book of Morton and Mayers [121]. In practice, though
it is found that in most problems the semi-implicit method can use a much larger
∆t than the explicit method. Figure 2.5 shows a comparison of the results of
each method, the explicit and the semi-implicit finite difference, for the diffusion-
advection-reaction system (2.16)-(2.21) using the initial conditions shown on Fig-
ure 2.3a and the parameter values of (2.34). The results are shown in red and blue
colour for the semi-implicit and explicit finite difference methods, respectively,
while solid lines and dashed lines distinguish the solutions of u and v for each
method. The two approaches produce almost the same results for ∆t = 0.02 but
the use of a slightly bigger ∆t (∆t = 0.027) resulted in oscillations in the solution
of the explicit method. The oscillations are first visible in the u solution as the
prey population is assigned a greater diffusion coefficient compared to the preda-
tor. Figure 2.6 shows the results of the semi-implicit method for various values
of ∆t. Even though no oscillations occur in the solution for large values of ∆t
the method fails to capture similar results to the ones obtained with smaller ∆t.
Although each step of the semi-implicit method requires more work compared to
the explicit approach, the overall amount of work needed to reach the final time
is much less.
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(a) t = 2; ∆t = 0.02.
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(b) t = 2; ∆t = 0.027.

Figure 2.5: Comparison of explicit and semi-implicit finite difference method for
different ∆t.
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Figure 2.6: Semi-implicit results at t = 2 for different values of ∆t.

2.10 Summary
In this chapter, we considered a diffusion-reaction-advection predator-prey system
with bias velocity based on a fecundity gradient. Model analysis was carried
out by looking at the possible equilibrium points and derived conditions for the
parameter values in order to produce stable steady states. Focus was given to the
coexistence steady state where the existence of Hopf bifurcation was presented
by numerical simulations.

Two numerical methods were considered to approximate the system; the explicit
finite difference and explicit finite element method, and the results of the two
numerical approaches were compared. Convergence analysis of each method was
then carried out by keeping the value of ∆t/∆x the same but with successive
refinement of the two meshes so that ∆t → 0 and ∆x → 0. We found an order of
convergence 2 for the finite difference method while we observed that the order
of convergence of the finite element method is approaching 2 as ∆x decreases.
Since the explicit scheme is associated with stability considerations we applied
a semi-implicit finite difference method to approximate the system which avoids
such constraints on the time-step value. Using numerical simulations we showed
that the semi-implicit method remains numerically stable for large values of ∆t,
though as ∆t → 1, the method fails to produce accurate results.

The model analysis (non-dimensionalisation and stability analysis) and the anal-
ysis of the numerical techniques (convergence analysis and numerical stability)
carried out in this chapter provide the foundations for the study of the 2-D
reaction-diffusion-advection predator-prey system in the following chapter where
environmental variations are included in the model, such as climate change, which
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impact species massively. More precisely, together with my collaborators for the
next chapter, Dr Hélène Audusseau (Department of Zoology, Stockholm Univer-
sity) and Dr Reto Schmucki (UK Centre for Ecology and Hydrology), we model a
reaction-diffusion-advection parasite-host system with temperature dependence
and observe how global warming is affecting species patterns of coexistence.
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Chapter 3

Modeling Predator-Prey Dynamics
and Climate Influence in a
Two-Dimensional Domain on a
Static Mesh

In this chapter, we extend our study of the fixed-mesh finite difference for the
diffusion-advection-reaction predator-prey system of Chapter 2 to two dimen-
sions. Specifically, we model a parasite-host relationship and illustrate how cli-
matic influence can be incorporated into the model by the use of a climate func-
tion, and numerically solve the temperature-dependent model by the fixed mesh
finite difference method. Results are derived using the maximum temperatures
observed in Spain and Portugal in 1950 and 2020 and the temperature projections
for the year 2050.
This chapter is a collaboration with Dr Hélène Audusseau (Department of Zool-
ogy, Stockholm University) and Dr Reto Schmucki (UK Centre for Ecology and
Hydrology).

3.1 Chapter Overview
Temperature increase impacts species, but we know little about their cascading
effect, that is their effect on trophic interactions, e.g., on predation or para-
sitism. In particular, the impact of temperature on species interactions is likely
to strongly rely on species phenotypic plasticity and dispersal ability (capacity
and behaviour) to warming [21]. Ectotherms are a good study model as they are
very sensitive to temperature and temperature affects both the probability of a
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species to move and its dispersal distance. We numerically solve a 2-D diffusion-
advection-reaction parasitoid-host system where climate influence is modelled in
this partial differential equations framework as an exogenous driver which affects
the dispersal of species as well as the prey growth rate. Mathematically, this
exogenous driver is a function of time and space, the climate function, that de-
scribes how favourable is the climate, on a scale from 0 to 1. In [168] authors
have shown that the summer season will last nearly half a year in the next 100
years. Here we investigate how the parasitoid and host spatial distribution is af-
fected by the increase in temperature through the years based on the maximum
temperatures reported in years 1950 and 2020 in Spain and Portugal, and the
projected maximum temperatures for the year 2050.

3.2 Introduction
The impact of global warming on species is well known but less is known about
its impact on species interactions and how it affects patterns of co-occurrence.
We know, however, that differences in the sensitivity of different species to rising
temperature will disrupt biotic interactions because species’ responses are not
necessarily consistent between species groups, and vary among species accord-
ing to their trophic position, role in the ecosystem, or else, according to their
life-history characteristics. Understanding and predicting these changes in biotic
interactions is fundamental because these interactions govern biological commu-
nities and are involved in a wide range of regulatory processes of ecosystems.

To improve forecasting of the impact of climate change, a large body of litera-
ture has stressed the need to focus on species attributes that are temperature
dependent and that affect species interaction [21]. Species’ abilities to adapt
or disperse are two functional traits likely to reflect species’ adaptive potential
to climate change. The first, species adaptive potential, is also referred to as
plasticity. Species plasticity reflects the large diversity of phenotype that related
individuals can develop if placed under different environmental conditions, such
as different temperatures. The plasticity of species to temperature variations,
such as in the relative growth rate or developmental rate, varies greatly among
species (Fig. 1 from Berg et al. 2010 [21]). These developmentally related traits
are, additionally, often good indicators of species adaptive potential [91, 135, 23].
Further studies at the scale of communities also indicated that the robustness of
species interactions under climate change is determined by these variations in the
sensitivity of each species of a community to temperature [3]. The second, the
dispersal ability, determines species’ ability to escape adverse direct and indirect
consequences of temperature changes [179] by colonizing new habitats as they
become available. Here also, species differ greatly in their dispersal ability (Fig.
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2 from Berg et al. 2010 [21]). Differences among species in the timing and rates
of dispersal can result in spatial or temporal mismatches of important species as-
sociations [163, 126]. For example, Van Grunsven et al in [159] showed that plant
species that have colonized northwestern Europe from southern climate regions
because of the warming may become temporarily released from soil pathogenic
activity, as they disperse faster than their natural enemies. Although species
plasticity and dispersal abilities are commonly accepted as important drivers of
species’ adaptive potential to climate change, at present hardly any comparative
data are presented on the temperature sensitivity of life-history traits between
species that are in trophic interactions (or for species within communities). We
also lack reliable data on the dispersal rate of many species [21], even though
dispersal is often assumed to be proportional to species size [80].

Ectotherms are a good model to study the impact of rising temperatures. First,
they reflect a large part of the biodiversity on Earth (99.6%) which makes of
particular importance the understanding of their response to warming. Second,
because ectotherms organisms are unable to regulate their body temperature,
they strongly depend on the external temperature condition for their develop-
ment and movement [144, 7, 125]. Many aspects of the individual performance
of ectotherms, such as behaviour, metabolic rate and associated growth rate, or
reproduction rate, are influenced by the temperature of their environment, due
to an increase in physiological rates at higher temperatures. Typically, the re-
lationship between traits and temperature in ectotherms shows a characteristic
shape, in which performance increases with increasing temperature, reaches a
maximum, and then declines rapidly with further increases in temperature [96].
Understanding how climate conditions affect species distribution and dynamics
is therefore essential to predict species co-occurrence in a changing environment.
This is even more important for species involved in strong trophic interactions,
such as the dependence of a predator on its prey species. Voigt et al. in [164]
showed that the vulnerability of predators to global warming is twice as high as
the vulnerability of plants (they studied: xerothermic grasslands, primary pro-
ducers, arthropod herbivores, and their predators). In aquatic systems, Petchey
et al. in [128] also showed that in response to warming, communities lose more
top predators.

As very few experimental works have explored the range of sensitivity of inter-
acting species to warming and how the warming impacts species interactions, the
goal here is to use a modelling approach to explore the impact of climate change
on a pair of model species, in interaction. We focus on two traits, thermal sensi-
tivity and dispersal ability, and explore the impact of differences in the thermal
sensitivity of each species for these traits on species pattern of coexistence. Ba-
sically, we model species distribution in a wide range of thermal conditions and
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explore the range of physiological thermal tolerance of each species that allow
species coexistence. The idea is to explore the impact of ongoing warming on the
spatial distribution and community formation of a pair of interacting species.

3.3 Mathematical Model of Climate Effect on
Population Systems

We consider a mathematical model which focuses on the dynamics of a parasitoid-
host system. The temporal dynamics of the system are modelled by a coupled
system of two ordinary differential equations. The species interactions consid-
ered in our model exhibit oscillatory temporal dynamics. We extend the ODE
system spatially where spatial interactions are considered via the random motil-
ity of each species, giving rise to a system of two partial differential equations
(diffusion-reaction equations) that model the spatio-temporal dynamics of the
host-parasitoid community described here.

Species’ spatial movement plays an important factor in shaping ecological com-
munities, as many ecological processes are driven by spatial structures. In certain
ecological contexts, reaction-diffusion models may not adequately describe how
organisms move and disperse through space [139]. Particularly, in [139] Rowell
explains how models which incorporate the dispersal of species only by random
diffusion fail to explain certain ecological phenomena and do not accurately re-
flect the non-Brownian motion of individuals. Species are not completely ignorant
of the surrounding environment as the behaviour described by the random dif-
fusion. Hence, spatial heterogeneity has been the subject of much study where
authors are extending the standard diffusion-reaction systems to systems where
species dispersal is a combination of random and biased movement. Mathemat-
ical modellers are accounting for bias velocities by the use of advection terms
(diffusion-advection-reaction models) (for example, see [4, 146, 51, 132, 106] and
references therein).

In our model, we account for the bias velocity of species by the advection term
first proposed by Grindrod [63] where each species is moving along a fecundity
gradient (see Section 2.3.3). This extra velocity term accounts for both spatial
heterogeneous environments, e.g. food resources, and the species interactions.
Grindrod [63] considered the dynamics of a competitive species model in one
spatial domain and Kurowski et al. [102] in two spatial dimensions. In [154]
authors extend the model studied in [62], [63] and [102] by considering more than
two species or populations.

Apart from spatial variation, environmental variations, including climate change
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[20, 29], can also impact species massively. In the paper of Y. Sekerci and S.
Petrovskii [143], authors have shown that when the oxygen production rate in the
ocean becomes too low or too high, which depends on the water temperature and
hence affected by global warming, the plankton-oxygen system dynamics change
abruptly, resulting in the oxygen depletion and plankton extinction. In [134]
authors showed that warming can strongly stabilize or destabilize populations
and food webs by changing the interaction strengths between predators and their
prey.

Understanding the impact of global warming on the stability of populations is
currently one of the most critical scientific challenges. However, the literature still
lacks mechanistic understanding of how warming affects population dynamics,
species’ extinction risks and ecosystem functions.

In [142], the authors looked at the effects of climate change on a predator-prey
model of ordinary differential equations by setting the predation rate to depend
on temperature while in [61] authors set the temperature to only affect the preda-
tors indirectly by varying the rate of growth and carrying capacity of the prey
according to fluctuations describing good and bad temperature years.

The above studies, although informative, neglect the influence of climate change
on species dispersal. Species dispersal is likely to strongly influence patterns
of co-occurrence [186, 99]. Moreover, very few studies are considering numeri-
cal schemes for the approximation of such systems and most numerical simula-
tions found in the literature are accounting for a one-dimensional spatial domain.
This acts as motivation for our work where we aim to numerically solve a two-
dimensional predator-prey model with temperature dependence on both species
dispersal as well as the rate of growth and carrying capacity of the prey.

Predator-prey systems have been studied extensively, and there are many dif-
ferent classical models. As a starting point, we present the (temperature-free)
two-dimensional version of the diffusion-advection-reaction system studied in the
previous chapter where Holling type II functional response is used to model the
parasitism.

3.4 Two-Dimensional Diffusion-Advection-Reaction
Parasite-Host Model

The mathematical model is based on a system of partial differential equations
which incorporates the modification of species’ movement in response to their
interactions and the condition of their physical habitat. The host species of
which the population density is denoted by u are modelled as having logistic,
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density-dependent growth, with intrinsic growth rate r and carrying capacity K.
Parasitoids’ population density is defined by v and the parasitism is modelled by
the Holling Type II functional response which describes the effect when the rate
of prey consumption by a predator rises as prey density increases, but eventually
levels off at an asymptote at which the rate of consumption remains almost con-
stant regardless of increases in prey density [77]. Type II functional responses
are the most frequently studied functional responses and are well-documented in
empirical studies [60, 145, 90, 50]. The rate of parasitism is denoted by α while
A is the prey population size at which the growth rate of the predator is half
its maximum. The constant ε represents the number of viable eggs that a para-
sitoid lays on a single host, i.e., a parasitised host gives rise to ε next-generation
parasitoids. In effect, ε is a dimensionless parameter (number of parasitoids per
number of hosts) describing the parasitoid conversion efficiencies of hosts to par-
asitoids, often given as a fraction or decimal. Finally, parasitoids are subject
to intrinsic mortality rates d and the motility coefficients δu and δv of the two
species are constants and determine the rate at which each species disperses ran-
domly through the domain. The full diffusion-advection-reaction system is thus
as follows:

∂u

∂t
= δu∇2u︸ ︷︷ ︸

random motility

−
movement driven by environment quality︷ ︸︸ ︷

∇ · (u∇ϕu) +

ur
(
1− u

K

)
︸ ︷︷ ︸
logistic growth

−

mortality due to parasitism︷ ︸︸ ︷
αuv

A+ u

(3.1)

∂v

∂t
= δv∇2v︸ ︷︷ ︸

random motility

−
movement driven by environment quality︷ ︸︸ ︷

∇ · (v∇ϕv) +

growth due to parasitism︷ ︸︸ ︷
αεuv

A+ u
− dv︸︷︷︸

mortality

(3.2)

where the expressions for Eu(u, v, x, y) and Ev(u, x, y) are

Eu(u, v, x, y) = r
(
1− u

K

)
− αv

A+ u
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and
Ev(u, x, y) =

αεu

A+ u
− d,

respectively.
Then, the expressions for the velocity potentials ϕu and ϕv are (cf. (2.11))

Eu = −ϵu∇2ϕu + ϕu and Ev = −ϵv∇2ϕv + ϕv (3.3)

where ϵu and ϵv are very small parameters for smoothing any sharp variations in
Ev(u, v, x, y) and ϕu and Ev(u, x, y) and ϕv, respectively. The system is posed
on a given domain say Ω of length L, i.e., Ω = (0, L) × (0, L), with zero-flux
Neumann boundary conditions on the boundaries ∂Ω to close the system.
The list containing all the variables and parameters used in the model can be
seen in Table 2.1.

Even though the above model is set to include many real-life complexities it still
has some limitations.

3.4.1 Limitations

The system equations (3.1) and (3.2) assume that species live in an ecosystem
where external factors such as droughts, fires, and epidemics are stable or have
a similar effect on the interacting species. Moreover, the predator is completely
dependent on the prey as the only favourite food source. The logistic growth of
the prey in the absence of the predator or human poaching of the prey implies
that the population of the prey would increase in a sigmoid curve shape until it
reaches the maximum density of the living area, which is its carrying capacity.
Moreover, the system assumes that there is no threat to the prey besides the
predator species being studied.
Lastly, the system above assumes that climate changes varying in space and
through time do not affect species’ individual performance or their biotic inter-
actions. Hence, we wish to add the climatic influence to our model through a
climate function as described in the next section.

3.5 Climate Function
It is proven by historic data that climate change is happening, yet very little is
known about how climate change can affect predator-prey dynamics. Following
the paper of Gretchko, Marley and Tyson [61], we have incorporated tempera-
ture variation in the model through the use of a climate function. The response
of the climate function to temperature, in our model, is based on the thermal
performance curve of ectotherms.

44



Figure 3.1a shows the general thermal performance curve of ectotherms where
the critical minimum and critical maximum temperatures indicate the lower and
upper thermal limits of performance respectively. The optimal temperature is at
which the performance is maximised and the performance breadth is the tem-
perature range where the performance is half its maximum. Using the thermal
performance curve for ectotherms, shown in Figure 3.1a, as an indicator of the
relationship between the species’ relative fitness and temperature, we introduce
the climate function g(T ) which has a range of values between 0 and 1 where the
value 0 corresponds to the optimal/favourable temperature and 1 corresponds to
the lower or upper critical temperatures. Any values between these two extremes
are allowed as shown in Figure 3.1b.
We have set the climate function g to affect the velocity of both species while
only affecting the prey logistic growth directly. This means that, apart from
the movement, predators respond indirectly to climate change through changes
in prey density. This is achieved by making the movement of species and the
growth rate and carrying capacity of the prey dependent on the climate function.
By equation (2.9) the velocity by which the two populations are dispersing can
be expressed by

wu = −δu
1

u
(∇u) + νu

for the prey, and

wv = −δv
1

v
(∇v) + νv

for the predator, where the bias velocities are defined by νu = ∇ϕu and νv = ∇ϕv

(see equation (2.10)). Hence, the new temperature-dependent velocities of the
prey and the predator are

w̃u = wu (1− ewu g(T ))

and
w̃v = wv (1− ewv g(T ))

respectively, where 0 < ewu,wv < 1 are scaling factors of the climate function.
Usually, parasites have a smaller size than their prey, therefore climate change
has a greater effect on the predator movement than on the prey movement and
hence ewv > ewu .
In a similar way, the intrinsic growth rate and the carrying capacity of the prey
are dependent on the temperature by the equations

r̃ = r (1− eg(T ))2

and
K̃ = K (1− eg(T ))2 ,
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respectively. Again, 0 < e < 1 are scaling factors of the climate function.

(a) Thermal performance curve of ec-
totherms.
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(b) Climatic function g(T ).

Figure 3.1: The formation of the climate function g(T ) based on the general
shape of the thermal performance curve for ectotherms.

Having defined the climate function and how it affects the chosen variables and
parameters, we now include it in the full system of equations (3.1) and (3.2).

3.6 Temperature Dependent Two-Dimensional
Parasite-Prey Model

The full reaction-diffusion-advection system of (3.1) and (3.2) for the two-dimensional
predator-prey model with temperature dependence, as described above, is

∂u

∂t
=
(
δu∇2u−∇ · (u∇ϕu)

)
(1− eug(T ))+

ur̃

(
1− u

K̃

)
− αuv

A+ u

=
(
δu∇2u−∇ · (u∇ϕu)

)
(1− eug(T ))+

ur (1− eg(T ))

(
1− eg(T )− u

K(1− eg(T ))

)
− αuv

A+ u

(3.4)

and
∂v

∂t
=
(
δv∇2v −∇ · (v∇ϕv)

)
(1− ev g(T )) +

αεuv

A+ u
− dv. (3.5)
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The equations for E(u, x, t) and E(v, x, t) are given by the temperature-dependent
system (3.4) and (3.5) in the following form

Eu(u, v, x, y) = r̃

(
1− u

K̃

)
− αv

A+ u

= r(1− eg(T ))

(
1− eg(T )− u

K(1− eg(T ))

)
− αv

A+ u

(3.6)

and
Ev(u, x, y) =

αεu

A+ u
− d. (3.7)

As already stated in (3.3) the equations for the velocity potential ϕu and ϕv are

Eu = −ϵu∇2ϕu + ϕu and Ev = −ϵv∇2ϕv + ϕv. (3.8)

Again, 0 ≤ ϵu, ϵv < 1.
We next carry out a stability analysis of the movement-free temperature-dependent
system and compare the findings with the results obtained in Section 2.5.2 for
the temperature-independent model.

3.6.1 Model stability analysis of the temperature-dependent
model

Using the scaling in Section 2.5.1 and dropping the hats, the resulting non-
dimensionalized system is given by,

∂u

∂t
=
(
D̃u∇2u+∇ · (u∇ϕu)

)
(1− eug(T )) + u

(
1− eg(T )− u

)
− s̃1uv

z̃ + u
(3.9)

and
∂v

∂t
=
(
D̃v∇2v +∇ · (v∇ϕv)

)
(1− ev g(T )) +

s̃2uv

z̃ + u
− β̃ v. (3.10)

Therefore, by the non dimensional system (3.9) and (3.10), the dimensionless
equations for E(u, x, t) and E(v, x, t) are given by

Eu(u, v, x, y) = (1− eg(T )− u)− s̃1v

z̃ + u

and
Ev(u, x, y) =

s̃2u

z̃ + u
− β̃,
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followed by the non-dimensional equations for ϕu and ϕv,

ϕu −
ϵu
L2

∇2ϕu =
1

κ
(1− eg(T )− u)− m1v

z̃ + u
(3.11)

ϕv −
ϵv
L2

∇2ϕv =
m2u

z̃ + u
− γ (3.12)

where

D̃u = Du/(1− eg(T )),

D̃v = Dv/(1− eg(T )),

s̃1 = s1/(1− eg(T )),

s̃2 = s2/(1− eg(T )),

z̃ = z/(1− eg(T )),

β̃ = d/(1− eg(T )),

m1 = s̃1/(rL
2),

m2 = s̃2/(rL
2),

γ = β̃/(rL2),

and κ = 1/(rL2),

(3.13)

(cf. (2.24)).
We carry out the same linear stability analysis as the one in Section 2.5.2 which
reveals the following three non-negative equilibrium states for the temperature-
dependent model are:

• the unstable trivial state, (0, 0), with eigenvalues 1− eg(T ) and −β. Since
0 ≤ eg(T ) < 1, (0, 0) is an unstable saddle point.

• the locally asymptotically stable host-only state, (1−eg(T ), 0), where both
eigenvalues are negative if

β̃ >
s̃2(1− eg(T ))

z̃ + 1− eg(T )

holds, or else (1, 0) is an unstable saddle point.

• the coexistent state, (u∗, v∗), where

u∗ =
β̃ z̃

s̃2 − β̃

and
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v∗ =
(1− eg(T )− u∗)(z̃ + u∗)

s̃1
.

This steady state is feasible only if

0 <
β̃z̃

s̃2 − β̃
< 1− eg(T ) (3.14)

and the positive equilibrium point (u∗, v∗) is locally asymptotically stable if

z̃ >
(s̃2 − β̃)(1− eg(T ))

s̃2 + β̃
. (3.15)

If we express (3.15) in terms of the parameters given in (2.24) we would be able
to compare the conditions (2.28) and (3.15) of the temperature-independent and
temperature-dependent model, respectively.
The condition given in (3.15) for which the coexistence steady state of the
temperature-dependent model undergoes a Hopf bifurcation in terms of the pa-
rameters in (2.24) is given by

z > (1− eg(T ))2
(s2 − β)

(s2 + β)
.

In fact, since 0 ≤ eg(T ) < 1 the condition in (2.28) is sufficient for an asymptot-
ically stable coexistence steady state for the temperature-dependent model.

Turning our attention now to the condition in (3.14) which gives the criterion
expression for the feasibility of the coexistence steady state E(u∗, v∗). If we
express (3.14) in terms of the parameters given in (2.24) we have

0 <
βz

(s2 − β)
< (1− eg(T ))2. (3.16)

Equation (3.16) implies that the coexistence steady state is only feasible for a
range of favourable temperatures and the size of this range depends on the values
of β, z, s2 and e. Outside this range the coexistence steady state is not feasible
any more, giving rise to the host-only state (1−eg(T ), 0) which is stable for those
(very low or very high) temperatures. Therefore the climate function is set to
change the dynamics of the predator-prey system.

In the section above we have shown that the inclusion of the climate function in
our model does change the outcome of the predator-prey relationship. As in the
temperature-independent model, the three usual predator-prey species outcomes
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(both populations die out; prey wins; stable coexistence) are possible for the
temperature-dependent model but with different equilibrium points. The condi-
tions for the feasibility or the stability of those equilibrium points are different
for each case.

In this thesis, we are mainly interested to see how temperature variation can
influence the formation of communities and the patterns of species co-occurrence.
Hence, we numerically solve the temperature-dependent predator-prey model by
accounting for the maximum temperatures of three different years in Spain and
Portugal. The results are reported and compared below.

3.7 Numerical Simulations

3.7.1 Environment and Climatic Data

In a recent study, [168], that examined how climate change is affecting the pat-
terns and duration of the seasons in the Northern Hemisphere, scientists Wang et
al. revealed that the average length of summer in Northern latitudes has already
increased from 78 to 95 days between 1952 and 2011, while the length of winter,
spring and autumn contracted with winter to shrunk from 76 to 73 days. In addi-
tion, authors have predicted that summer will last nearly half a year, but winter
less than 2 months by 2100. Such a discovery is a good overarching starting point
for understanding the implications of seasonal change and trigger reactions.

In this study, we aim to gain an overview of the effect of longer and hotter
summer seasons on predator and prey space distributions. For the simulations in
this chapter, we are considering the climatic map of the maximum temperatures
observed in Spain and Portugal from March to November for the years 1950 to
2020. Spain and Portugal offer a wide range of temperatures, including warm
temperatures which are likely to be beyond the tolerance range of our species
(parasites and their prey). Such content will allow hypotheses on the impact of
heat islands (urban zone) and heat stress and this would not have been possible
with a limited range of temperatures.

Maps of the maximum temperatures for 1950 and 2020 can be seen in Figure 3.2.
We have also used the data over the 70 years period (1950-2020) to project, using
linear extrapolation, the estimated temperatures for the year 2050.
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Figure 3.2: Map of the reported maximum temperatures for March to November
for the years 1950 and 2020 and the predicted maximum temperatures for the
year 2050 in Spain and Portugal.

3.7.2 Parameter values

The choice of the parameter values used for the following simulations is strongly
based on the paper of Pearce et al. [127] where authors studied a system of
four reaction-diffusion equations describing the dynamics of two hosts and two
parasites. In this work, the host dispersal is considered to be greater than the
one of the parasitoids.
The values of the parameters are as listed:
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Parameter Value Description
δu 0.01 Prey diffusive parameter
δv 0.0003 Predator diffusive parameter
r 0.4 Intrinsic growth rate for prey
K 250 Carrying capacity for prey
ε 0.4 Parasitoid conversion efficiencies

of hosts to parasitoids
α 0.35 Parasitism rate
d 0.09 Intrinsic mortality rate of parasitoids
A 80 Predator half-saturation constant

Constant Value Description
ewu 0.7 for the prey velocity
ewv 0.9 for the parasitoid velocity
e 0.4 for the prey growth rate and carrying capacity
ϵ 0.25 smoothing constant

Table 3.1: Parasite-prey model (3.4)-(3.8) parameter and constant values used
for the simulations.

We consider a domain of lengths L × M = (10002m × 10002m), corresponding
to the Spanish mainland extent, i.e., 1,085 km (674 mi) East-West and 950 km
(590 mi) North-South. Given the above parameter values, the baseline non-
dimensional parameter set (2.24) is: Du = 2.5 × 10−6, Dv = 1.0 × 10−9, s1 =
0.875, s2 = 0.35, z = 0.32, β = 0.225. Thus the parameters in (3.13) for the
dimensionless temperature-dependent model are given by

D̃u = 2.5× 10−6/(1− eg(T )),

D̃v = 1.0× 10−9/(1− eg(T )),

s̃1 = 0.875/(1− eg(T )),

s̃2 = 0.35/(1− eg(T )),

z̃ = 0.32/(1− eg(T )),

β̃ = 0.225/(1− eg(T )),

m1 = 0.875/
(
4× 105(1− eg(T ))

)
,

m2 = 0.35/
(
4× 105(1− eg(T ))

)
,

γ = 0.225/
(
4× 105(1− eg(T ))

)
,

κ = 1/(4× 105).

(3.17)

We now proceed with the numerical approximation of the non-dimensional system
(3.9)-(3.12).
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3.7.3 Finite difference scheme

The model is encoded on a two-dimensional rectangular domain defined by 0 ≤
x ≤ 108.5 and 0 ≤ y ≤ 95. We discretize the domain by 130× 78 equally spaced
nodes (∆x = 108.5

130
and ∆y = 95

78
), as shown in Figure 3.3.

Boundary conditions

For the outer boundaries of the rectangular domain, we apply zero Neumann
boundary conditions which confine species, while to create the boundaries sepa-
rating land and sea (see Figure 3.3) we set all the parameters to zero at the sea,
including the diffusion parameters.

Figure 3.3: Two-dimensional finite difference grid; N = 130, M = 78. The blue
colour depicts the land and the white colour the sea.

Numerical solution

The dimensionless system (3.9)-(3.12) is solved by the finite difference method
and a forward Euler time-stepping method is used to integrate the equations.
Second- and first-order terms are approximated using central difference and one-
sided approximation, respectively. For the solutions of ∂u/∂t (3.9) and ∂v/∂t
(3.10), the value of the velocity potentials ϕu,v are required. Hence, equations
(3.11) and (3.12) are approximated first which need the formation of pentadiag-
onal matrices.
The equation approximating ϕu (3.11) after applying the finite difference approx-
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imations is

− ϵu
∆x2

ϕn
u(i+1,j) −

ϵu
∆y2

ϕn
u(i,j+1) +

(
1 +

2ϵu
∆x2

+
2ϵu
∆y2

)
ϕn
u(i,j)−

ϵu
∆x2

ϕn
u(i−1,j) −

ϵu
∆y2

ϕn
u(i,j−1) =

1

κ

(
1− eg(T(i,j))− u(i,j)

)
−

m1v
n
(i,j)

z̃ + un
(i,j)

for i = 2, ..., N and j = 2, ...,M

(3.18)

and for ϕv by (3.12),

− ϵv
∆x2

ϕn
v(i+1,j) −

ϵv
∆y2

ϕn
v(i,j+1) +

(
1 +

2ϵv
∆x2

+
2ϵv
∆y2

)
ϕn
v(i,j)−

ϵv
∆x2

ϕn
v(i−1,j) −

ϵv
∆y2

ϕn
v(i,j−1) =

m2u
n
(i,j)

z̃ + un
(i,j)

− γ

for i = 2, ..., N and j = 2, ...,M.

(3.19)

The dimensionless equation for ∂u/∂t (3.9) after the finite difference approxima-
tions takes the form

∂u

∂t
=[
− 1

∆x2


(
un
(i+1,j) + un

(i,j)

)(
ϕn
u(i+1,j) − ϕn

u(i,j)

)
2

−

(
un
(i,j) + un

(i−1,j)

)(
ϕn
u(i,j) − ϕn

u(i−1,j)

)
2

−

1

∆y2


(
un
(i,j+1) + un

(i,j)

)(
ϕn
u(i,j+1) − ϕn

u(i,j)

)
2

−

(
un
(i,j) + un

(i,j−1)

)(
ϕn
u(i,j) − ϕn

u(i,j−1)

)
2

+

δu

(
un
(i−1,j) − 2un

(i,j) + un
(i+1,j)

∆x2

)
+ δu

(
un
(i,j−1) − 2un

(i,j) + un
(i,j+1)

∆y2

)](
1− eg(T(i,j))

)
+

un
(i,j)

(
1− eg(T(i,j))− un

(i,j)

)
−

s̃1u
n
(i,j)v

n
(i,j)

z̃ + un
(i,j)

for i = 2, ..., N and j = 2, ...,M.

(3.20)
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and for ∂v/∂t by (3.10) we get

∂v

∂t
=[
− 1

∆x2


(
vn(i+1,j) + vn(i,j)

)(
ϕn
v(i+1,j) − ϕn

v(i,j)

)
2

−

(
vn(i,j) + vn(i−1,j)

)(
ϕn
v(i,j) − ϕn

v(i−1,j)

)
2

−

1

∆y2


(
vn(i,j+1) + vn(i,j)

)(
ϕn
v(i,j+1) − ϕn

v(i,j)

)
2

−

(
vn(i,j) + vn(i,j−1)

)(
ϕn
v(i,j) − ϕn

v(i,j−1)

)
2

+

δv

(
vn(i−1,j) − 2vn(i,j) + vn(i+1,j)

∆x2

)
+ δv

(
vn(i,j−1) − 2vn(i,j) + vn(i,j+1)

∆y2

)](
1− eg(T(i,j))

)
+

s̃2u
n
(i,j)v

n
(i,j)

z̃ + un
(i,j)

− β̃ vn(i,j) for i = 2, ..., N and j = 2, ...,M.

(3.21)

The equations for ϕu, ϕv, ∂u/∂t and ∂u/∂t at the outer boundaries are evaluated
by equations (3.18), (3.19), (3.20) and (3.21), respectively by accounting for zero
Neumann boundary conditions.
For example, to evaluate ϕu(1,1:M) from (3.18) (at the left-hand-side boundary,
x1, of Figure 3.3) we consider the zero Neumann boundary condition

∂ϕu

∂x
= 0 at x = 0. (3.22)

Applying a two-interval approximation gives

ϕu(2,1:M) − ϕu(0,1:M)

2∆x
= 0 (3.23)

and hence
ϕu(0,1:M+1) = ϕu(2,1:M+1).

Having evaluated ∂u/∂t and ∂v/∂t we then use the Euler explicit scheme to up-
date the population densities.
As already discussed in Chapter 2, the forward Euler time-stepping scheme for
the heat equation is restricted by the stability condition ∆t/∆x2 < 0.5, where
∆t and ∆x define the time step value and the interval between the space nodes,
respectively. Taking this restriction as a guide to avoid instability in the solution
of our diffusion-reaction-advection system and according to the formation of our
space, as mentioned above, we use the time step value ∆t < 0.1 for the simula-
tions.
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Using the convergence analysis of the 1-D temperature-free system in Section 2.7,
we observed that the error of the solution decays as we use a finer mesh and the
approximation generated by the explicit scheme converges to the exact solution
of the differential equations with a convergence rate of 2. Since the system of
equations used in the model cannot be solved analytically, we use the case of
having many space nodes as the exact solution for comparison. Even though
the error of the approximation decays with increasing the mesh density, and is a
critical issue which closely relates to the accuracy of the model, it can be imprac-
tical as it can result in a more computationally expensive scheme because of the
more steps of calculation required by the stability criterion stated above. Also,
as the spatial resolution increases, the rounding error increases accordingly, and
eventually overtakes the truncation error. The repeated experiments of the 2-D
temperature-dependent model with adjusting the space step ∆x and time step
∆t ensure that further reductions in the space step had no significant effect on
the numerical results.

Initial conditions

We have used the same initial conditions for both species where they are set to
initially occupy a region of the domain as shown in Figure 3.4. The function used
which corresponds to the initial conditions shown in Figure 3.4 is

u0
m,n = v0m,n = cos2

( π

20
(xm − x40)

)
× cos2

( π

20
(yn − y30)

)
, (3.24)

where m and n denote the intervals (x30, x50) and (x20, x40), respectively, while
the initial conditions of u and v are zero outside these intervals.

Figure 3.4: Initial conditions for the dimensionless parasitoid-host temperature-
dependent system. The same initial conditions were used for both u and v
(u(x, 0) = v(x, 0)).
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3.8 Results
The following figures show the results from the simulations using three different
temperature sets for the three years 1950, 2020 and 2050. For all cases, we
have used the same initial conditions as illustrated in Figure 3.4 and the same
parameter values as shown in (3.17) for the dimensionless temperature-dependent
system. Figure 3.5 shows the results for t = 20000, Figure 3.6 for t = 36000 and
Figure 3.7 for t = 50000. The left-hand side column in all the following plots
illustrates the results of the host population density, the middle column shows the
results for the parasitoid population density and the column on the right-hand
side depicts the climatic map for the maximum temperature in each year. The
different time plots allow us to see the time evolution of the community formation
of each species in the domain. In general, we observe that high population density
communities were formed in regions with relatively low temperatures. The host
population (left-hand side graph) has spread throughout the domain where high
populations are observed in regions with low temperatures except in parts of the
domain where parasitoids exist. Due to species interactions, regions of coexistence
are observed to have lower host densities.

Comparing the results of each year we clearly see that the increase in temperature
through the years has led to a continual decrease in the expansion of the species
in the domain. For the host population, fewer communities with high population
density are found in the results of years 2020 and 2050 while the parasitoids
are mostly found in the northern part of the domain in the corresponding year
results. Moreover, we observe a decrease in the total mass of the species (the
number of individuals). This phenomenon is more clear in the parasitoid results.

The model stability analysis carried out in Section 3.6.1 showed that the coex-
istence steady state is stable for a range of favourable temperatures. Outside
this range, the only stable steady state is the host-only. This observation is also
visible in the results below where the host population is shown to have spread
throughout the domain while the parasitoid population only exist in regions of
relatively low temperatures.
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Figure 3.5: Representation of the distribution of prey and predator population
densities in space for each year 1950 (a), 2020 (b), 2050 (c), at t = 20000. For
each case, the maximum temperature of each year is considered (right-hand side
plots).
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Figure 3.6: Representation of the distribution of prey and predator population
densities in space for each year 1950 (a), 2020 (b), 2050 (c), at t = 36000. For
each case, the maximum temperature of each year is considered (right-hand side
plots).
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Figure 3.7: Representation of the distribution of prey and predator population
densities in space for each year 1950 (a), 2020 (b), 2050 (c), at t = 50000. For
each case, the maximum temperature of each year is considered (right-hand side
plots).
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3.9 Summary
In this chapter, we considered the numerical approximation of a reaction-diffusion-
advection parasitoid-host system with climatic influence in a two-dimensional
spatial domain using a fixed mesh method. The parasitoid-host relationship was
described by a Holling type two functional response while the directed movement
of species towards more favourable regions of the domain was modelled using an
advection term depending on a fecundity gradient. This advection term describes
a biased velocity of species taking into account the environmental conditions of
their habitat as well as the conspecific interactions. The climate influence was
modelled using a climate function that modified both the intrinsic growth rate
and carrying capacity for prey and the dispersal velocity of both species (random
diffusion and biased-directed velocity). The climate function was constructed
based on the thermal performance curve of ectotherms and was set to take values
from 0 to 1 corresponding to more and less favourable temperatures, respectively.
Climate function scaling factors were used to describe the magnitude of the effect
of temperature on each of the variables and parameters set to be influenced by
climate change.

A model stability analysis of the temperature-dependent system was carried out
to obtain conditions for the parameter values required to produce biological
meaningful behaviour by looking at the non-negative equilibrium points. Then,
these conditions were compared with the ones observed in Chapter 2 for the
temperature-independent version of the system. The model stability analysis of
the temperature-dependent model showed that the coexistence steady state is
only feasible for a range of favourable temperatures while for very low or very
high temperatures the coexistence steady state becomes unstable and only the
host-only steady state is stable for those temperature ranges.

The central aim of this investigation was to observe the effect of the increas-
ing temperature through the years on the distribution of species and community
formation. Hence, results were obtained from a numerical approximation of the
solution by considering the maximum temperatures observed in Spain and Portu-
gal in the years 1950 and 2020 as well as the maximum temperature projections
for the year 2050. The results reported in this chapter showed that the commu-
nity formation and distribution of species in space correspond with the climatic
map of the maximum temperature of each year (i.e., high population densities
were observed in regions with low temperatures). Moreover, we observed that
there is no predator existence in regions of very high temperatures while hosts
were spread throughout the domain. This observation correlates with the insights
gained from the model stability analysis.
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In this investigation, we only considered the direct influence of climate change
on species dispersal and intrinsic growth rate and carrying capacity of the prey.
Other model parameters, however, may also be affected by climate change. Pos-
sible candidates are the predator kill rate and predator mortality rate if changing
climatic conditions make it harder for the predators to hunt and kill prey or if
climatic conditions could be fatal to the predator. By considering more specific
parasitoid-host systems (i.e., specific species of parasitoid and their hosts) for
which enough data has been collected we may be able to get a better description
of the complex influence that global warming can exert upon those systems. The
climate function used here is general and can be adapted to many situations. The
climate function scaling factor makes the climate function suitable to be adjusted
to influence many parameters of the model.

3.10 Fixed and Moving Meshes for Population Dy-
namics

The explicit finite difference numerical scheme used to approximate the parasitoid-
host system of this chapter is a standard numerical technique used by a lot of
modellers to approximate a range of different PDEs. Even though the method is
widely used and is easy to implement there are some drawbacks. We now briefly
describe the limitations associated with accuracy considerations of the explicit fi-
nite difference method followed by a short introduction to moving mesh methods
which will form the substance of the rest of the thesis.

The leading term in the truncation error of a fixed-mesh explicit finite difference
numerical scheme for a diffusion problem is proportional to hd4u

dx4 , where h = δ∆x2

12
,

which is a numerical diffusion distinct from the diffusion intrinsic to the problem.

In convergence, as ∆x → 0 and hence h tends to zero this numerical diffusion
term also tends to zero (as it should) and the truncation error decreases as the
leading term is eliminated. But if d4u

dx4 is large the magnitude is always large even
when h is small, and the results are adversely affected.

This situation occurs at a ‘corner’ of a near-discontinuity in u, for example at the
base or top of a near-vertical part of a graph of u, particularly if it is moving.

In these circumstances, a superior description is to have a moving point at the
discontinuity and replace the PDE by a jump condition, forming the so-called
moving boundary. The moving mesh method based on conservation is well-suited
to accommodate this description. The main feature of the moving mesh based
on conservation is that moving nodes are concentrated in regions with increasing
density u since the method is based on a conservation principle that “forces” the
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mass (number of individuals of a population), i.e., the area under the graph of
the density u, within each element of the discretised domain to remain constant
for all time. Therefore, regions with increasing density u will have a denser mesh
as the area under the graph of u within each element remains constant. Hence
the derivative of the leading term in the truncation error balances out between
the denominator and the numerator.

The systems of reaction-diffusion-advection equations coupled with moving inner
or outer boundaries and interfaces (near discontinuities in the solution) have been
widely used to describe the dynamics of spreading population in the context of
competitive species, predator-prey or even in epidemic models where the disease
is spreading in the domain through a moving front. To solve these systems nu-
merically, new numerical challenges arise. On the one hand, extremely small time
steps are usually needed due to the stiffness of the system. On the other hand,
as described above for the truncation error considerations it is always difficult to
accurately handle the moving boundaries and efficiently treat complicated topo-
logical changes. In the rest of the thesis, we demonstrate the feasibility of the
moving mesh method based on conservation as a tool for ecological studies which
overcomes these numerical difficulties and is suitable for handling and tracking
the moving boundaries. We focus on moving the nodes through a geometric
conservation approach, whereby the integral of a suitable quantity, e.g. mass,
is constant within a given patch of elements, but the footprint and location of
those elements are dynamic. We apply the method to a range of one-dimensional
moving boundary population problems while we also examine the application of
the method to a two-dimensional radially symmetric system. Several numerical
examples are examined to illustrate the efficiency, accuracy and consistency of
the moving mesh approach.
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Chapter 4

Background on Moving Mesh
Numerical Methods

Many systems of partial differential equations which are used to describe phe-
nomena such as gas and fluid dynamics, conservation laws, nonlinear optics, free
boundary problems, combustion, meteorology and mathematical biology often
involve structures or features which evolve in time as the integration of the PDE
proceeds. Such features may be interfaces, shocks, singularities, changes of phase,
high vorticity or regions of complexity. As we saw earlier in the thesis, a tradi-
tional way to numerically approximate PDEs is to impose a spatial mesh and
then discretize the solution on this mesh by using finite element or finite differ-
ence methods. Similar methods which are also used are the finite volume, the
collocation method or the method of lines. We refer to these strategies as fixed
mesh methods. However, these methods may not be effective in cases where the
problem being solved involves structures like the ones mentioned above as it leads
to large localized errors. It is beneficial to use some sort of nonuniform mesh,
adapted to the solution, on which to perform all of the computations. Having a
finer mesh around these features of interest will allow a better approximation of
the solution and reduce the overall error. Even so, the approach fails when the
structures move in space as time evolves. These extra levels of complexity to the
system through adaptivity can also lead to additional computational costs and
possible numerical instability.

As previously mentioned in the introduction, adaptive methods for solving partial
differential equations broadly fit into three categories h-, p- and r-refinement (h-
adding extra nodes, p- increasing the order of the approximating polynomials and
r- changing the position of existing nodes). Here, we focus on the r-refinement
which will form the substance of this chapter with the aim of concentrating on a
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particular strategy of r-refinement later on in the thesis. While h- and p- or hp-
methods are well-understood and are now well-established in many commercial
codes, r-refinement methods are less well-developed but have some significant
advantages. For example, sharp features or discontinuities (including moving
boundaries) can be tracked, avoiding excessive high resolution and guesswork.
The number of moving nodes can be kept constant which is advantageous from
a programming point of view as it is much easier to work with a fixed number
of nodes especially when the solution involves sparse matrices and hence has a
constant sparsity throughout the calculations. Moreover, in r-refinement meth-
ods, the node movement can be linked to the PDE which allows the numerics to
align with biological or physical modelling. For example, in a fluid flow problem,
the mesh may move with the fluid flow itself. However, a major consideration in
r-refinement methods is mesh tangling in which the mesh points can cross over
during the evolution. This generally leads to additional spatial instability and a
failure of the solution routine.

Typically r-refinement methods keep the mesh topology and the number of mesh
points fixed as the solution evolves. Hence the synonymous term “Moving Mesh
Methods”. In such procedures, the criterion that motivates the movement of the
already existing mesh points may be such that the nodes naturally concentrate
around regions where the solution has ‘interesting behaviour’, such as moving
boundaries or interfaces. Usually these features of interest exhibit sharp spatial
variations of either the solution or one of its derivatives.

The feature which is used to determine the mesh movement typically manifests
itself as a ‘monitor function’ and focuses on the equidistribution of mesh. For
example, the re-location of the nodes is based on the idea that some quantity
is equally distributed, other than just distance, area or volume. This quantity
may be a physical one such as mass or a non-physical one such as arc length.
Basically, the monitor function is a mathematical statement based on a quantity
which can be numerically quantified and used to move the mesh nodes towards
regions of high activity.

Following Budd, Huang and Russell [32], we will assume the monitor function
is always non-negative and, as they claim, the monitor function is usually con-
structed in one of three ways:

• depending on a priori solution estimate; e.g., an estimate of a quantity
related to the solution such as arc length or mass;

• depending upon a posteriori error estimates; e.g., as the approach used in
moving finite element methods [13], or estimates of the derivative jump
across element boundaries [153] where the key motivation for a monitor
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function is the equidistribution principle which involves selecting mesh
points such that some measure of the solution error is equalised over each
subinterval;

• depending upon some underlying physics or biology related to the solution;
e.g., the potential temperature or the vorticity in a meteorological problem

Constructions of moving mesh methods vary considerably, and in their final forms,
the moving mesh equations are very different. By [37] we classify moving mesh
methods into two groups depending on the mesh movement strategy: location-
based and velocity-based methods. The former one depends upon time-dependent
mappings which control directly the location of mesh points or in the continuous
sense the mapping x(ξ) from the auxiliary domain to the physical domain (ξ is
the computational coordinate and x the physical one). In contrast, the latter
targets directly the mesh velocity or the time derivative of the mapping xt(ξ). In
velocity-based methods, a mesh velocity equation is constructed and the mesh
point location is obtained by a time integration scheme, such as the forward Euler
time-stepping scheme. We examine these two classes separately in Section 4.1
and in Section 4.2, discussing key examples in each class.

4.1 Location-based
Following [37], consider a one-dimensional spatial domain where the adaptive
mapping x(ξ, t) defines the mapping from a computational domain Ωc to a phys-
ical domain Ωp. If the mesh on Ωc is uniform then ∂ξ

∂x
measures the density of the

mesh on Ωp.

To control the mesh, we choose a monitor function m(x) > 0 such that is pro-
portional to the mesh density at any given time t, i.e.,

∂ξ

∂x
= cm(x), (4.1)

where c is a constant.
This is equivalent to the equidistribution principle for the monitor function m(x).
Dividing (4.1) by m(x) and differentiating we obtain

∂

∂x

(
[m(x)]−1 ∂ξ

∂x

)
= 0, (4.2)

which, knowing m(x), can be solved to give ξ. Equation (4.2) is the Euler–Lagrange
equation of the quadratic functional

I[ξ] =

∫
Ωp

[m(x)]−1

(
∂ξ

∂x

)2

dx.
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The two main types of location-based methods are Moving Mesh Partial dif-
ferential equations (MMPDE) and optimal transport. In the former method,
[83, 84, 85, 86, 38, 31], the equidistribution requirement, or a variational version
of it, is used to define a second PDE, that relates the equidistributed co-ordinate
ξ to the fixed coordinate x. The paper by Huang and Russell [82] provides a good
review of MMPDE methods while the survey paper [37] gives a brief description of
various location-based approaches including the work of Winslow [184], Thomp-
son et al.[175], Brackbill and Saltzman [27], Dvinsky [55], Brackbill [28], Knupp
[97] and Knupp and Robidoux [98] which propose various elliptic equations or
variational methods for defining the adaptive mapping. The optimal transport
methods [31], are a natural generalisation of MMPDE methods in one dimension
[32]. The aim of this method is to be closest to a uniform mesh in a suitable
norm, consistent with satisfying the equidistribution principle.

We now turn to a category of moving mesh methods known as velocity-based
methods. The method used in the thesis is an example of a velocity-based method.

4.2 Velocity based
Velocity-based methods use a moving coordinate system to directly provide a
mesh velocity. Such a moving coordinate system, usually referred to as La-
grangian, is where the spatial co-ordinates are themselves functions of time, these
functions being mappings from a conventional fixed coordinate system to a mov-
ing one. For example, in fluid dynamics, the Lagrangian moving coordinate
system is used to follow fluid particles. More precisely, if w(x, t) denotes the
velocity of the fluid, ξ the reference coordinate of a fluid particle, and x(ξ, t) the
position of the particle at time t, then the particle and therefore the Lagrangian
coordinate lines evolve with

∂x

∂t
= w.

We expand on this theory below using the Reynold Transport theorem and the
Arbitrary Lagrangian Euler equation.

4.2.1 Fluid dynamics

In fluid dynamics, the motion of fluids may be described by taking either the
Lagrangian or Eulerian point of view. In the Lagrangian description, each moving
fluid particle (with its attributes) is followed individually and is identified by its
initial position, whereas in the Eulerian description variables such as density and
velocity are evaluated at fixed locations.
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A link between these two approaches is given by the Reynolds Transport Theorem
[181] in the form

d

dt

∫
Ω(t)

u dx =

∫
Ω(t)

ut dx+

∮
∂Ω(t)

uw · n̂ dσ

(by the divergence theorem) =

∫
Ω(t)

ut +∇ · (uw) dΩ,
(4.3)

where u is the fluid density and w is the velocity of the fluid. Here, Ω(t) denotes
a general moving domain while dσ is an element of the boundary ∂Ω(t) of Ω(t).
The Lagrangian conservation of mass is demonstrated by∫

Ω(t)

u dx = constant in time,

equivalent to
d

dt

∫
Ω(t)

u dx = 0

and the Eulerian conservation of mass is described by

ut +∇ · (uw) = 0.

Both approaches have been used over the years to numerically describe the motion
of fluids. The Eulerian description is more commonly used where the equations of
motion are discretized on a fixed mesh whilst the discretization in the Lagrangian
approach is to follow the velocities of the fluid particles using a moving mesh.
There are some compromises associated with the Lagrangian approach which are
mainly due to the tendency of the mesh to tangle [2, 71]. This and other consider-
ations regarding the Lagrangian approach have prompted the use of the so-called
ALE (Arbitrary Lagrangian Eulerian) methods, where local modifications of the
Lagrangian velocities are made as the computation develops [17, 40].

4.2.2 ALE (Arbitrary Lagrangian Eulerian) methods

Consider the generic PDE
∂u

∂t
= Lu, (4.4)

where u = u(x, t) is defined in a fixed frame of reference with coordinate x at
time t and L is a differential operator involving only space derivatives. We rewrite
this in a moving Lagrangian frame, by allowing x to be a moving coordinate x(t),
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the result of a time-dependent mapping from a fixed set of reference coordinates,
a = x(0) say. By the invertible mapping,

x = x̂(a, t).

The hat denotes a mapping from the Eulerian frame to the moving frame. In the
same manner, we define the solution u(x, t) in the moving frame

u(x, t) = u(x̂(a, t), t) = û(a, t)

and by chain rule we obtain

∂û

∂t
=

∂x̂

∂t
· ∇u+

∂u

∂t
.

Hence, the differential form of ALE is

u̇ = ẋ · ∇u+ Lu

where u̇ = ∂û
∂t

and ẋ = ∂x̂
∂t

.

The integral form of the ALE equation is the Reynolds transport theorem (4.3)
applied to a moving domain Ω(t) with boundaries ∂Ω(t) which moves with the
velocity w

d

dt

∫
Ω(t)

u dx =

∫
Ω(t)

Lu+

∮
∂Ω(t)

w · ∇u. (4.5)

Equation (4.5) allows the solution u of (4.4) to be obtained in a frame moving
with any given velocity, e.g. by the mesh velocity.

ALE methods are extensively used in the computation of fluid-structure interac-
tion problems, for example in [73, 101, 116, 140] and is widely used for free-surface
problems, based upon maintaining mesh quality [129, 131], Laplacian smoothing
[147] or pseudo-solid deformation [35, 166]. Successful ALE algorithms have also
been used for phase-change problems [141] and for the interaction of free surfaces
with solid boundaries [8, 151, 167].

The ALE methods are not restricted to fluid flow problems as we will observe
later on in this chapter.

4.2.3 Moving finite element

The moving finite element method was originally developed by Miller and Miller
[117] and Miller [118], and stimulated the study of many upcoming papers and
applications [1, 14, 18, 39, 176].
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Their method involves taking a PDE of the form (4.4) and determining the solu-
tion and the mesh simultaneously. The continuous version of the MFE determines
the solution and the mesh together by minimizing a discrete residual of the ALE
form of the PDE in a moving domain. The MFE method determines a mesh ve-
locity through a variational principle coupled to the solution of a PDE by using
a finite element approximation.

In their first work [117] the authors introduced this new numerical method with
the aim to deal with problems whose solutions develop sharp transition layers.
These attempts made use of the simplest hyperbolic PDE with near-shocks, the
Burgers’ equation [34], as a test equation. This early work had some success in
moving many nodes automatically into the critical regions of the solution.

This pioneering work inevitably led to the discovery of several common difficulties
such as node tangling and hence instabilities and proved to be highly sensitive to
particular user-defined parameters and unknowns.

To overcome the issue of node crossing and colliding, authors introduced vis-
cous forces to encourage nodes to stay separated. Additional improvements were
attempted in [117] which included the use of a variety of short and long-range
internodal repellent forces to avoid node tangling.

Although questions such as numerical instability and computational efficiency
remained unanswered these early works provide a method which allows the mesh
nodes to follow a moving shock and hence improved the resolution compared with
a static grid.

4.2.4 The Geometric Conservation Law (GCL)

In the 2002 paper [38], Cao, Huang and Russell introduce the concept of the
Geometric Conservation Law (GCL) to MMPDEs where, as in MFE, a variational
principle is used to construct a minimisation problem that determined the mesh
speed instead of the mesh location as in MMPDE method. This new adaptive
mesh movement strategy uses the GCL to drive a mesh movement algorithm
obtaining the mesh velocities directly.

The idea behind the GCL is to preserve properties associated with the volume
of each element, so that, for example, a moving fluid could not lose or generate
mass by mesh movement alone. This is achieved by having the minimizer of the
functional (of the mesh speed) driving the mesh points in such a way that the
rate of change of the cell volumes is proportional to the rate of change of the
monitor function, causing the desired mesh adaption.

The advantages of this approach are the ease of controlling the cell volumes
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(and therefore mesh adaption) and a theoretical guarantee for existence and non-
singularity of the coordinate transformation.

4.2.5 The Conservation Method

The Conservation Method was introduced in the 2005 paper by Baines, Hubbard
and Jimack [14]. This method shares common roots with the GCL, but instead
of using the variational principle to find the mesh velocities, they are directly
calculated from the integral form of the PDE.

According to the finite element framework used in the paper, a weak form of the
PDE is required that includes a set of weight functions that move with the mesh.
Then the use of the Reynolds Transport Theorem allows the link between the
Eulerian and Lagrangian descriptions. A system is constructed where the mesh
velocity is given in terms of a potential at a particular location (Eulerian view),
but the elements themselves track the movement of mass (Lagrangian view).
Hence the static (Eulerian) and the moving (Lagrangian) reference frames are
combined together in a single method.

The idea behind the conservation method is to use an integral to preserve a
desired quantity, such as mass, within each patch of elements from which the
velocities are constructed. The authors in [14] demonstrated the application of the
method to mass-conserving problems, where the global mass is constant, e.g. the
porous medium equation and a fourth-order nonlinear diffusion equation. In such
problems, the quantity which is conserved is local mass. For non-conservative
systems, the theory uses the concept of relative mass, the proportion of total
mass associated with each element patch. This approach has been applied in the
paper to a Stefan problem and a diffusion problem with a negative source term.

4.2.6 A distributed conservation principle

We saw earlier that equation (4.5) is directly derived from the governing PDE
(4.4) using the moving coordinates. We proceed with a principle upon which the
derivation of the moving coordinate system can be based.

We define the total mass by θ(t), i.e.,

θ(t) =

∫
Ω(t)

u dΩ, (4.6)

where the domain Ω(t) denotes the entire spatial domain at time t the points of
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which move with the velocity w. Differentiating (4.6) with respect to time yields

d

dt

∫
Ω(t)

u dΩ =
∂θ

∂t
= θ̇(t). (4.7)

Substitute equation (4.7) in (4.5) to obtain

θ̇(t) =

∫
Ω(t)

Lu dΩ +

∮
∂Ω(t)

w · ∇u dσ. (4.8)

Equation (4.8) determines the velocity w uniquely if θ̇ and u are known.

In practice, for a mass conserving problem (θ̇ = 0) the value of θ is calculated
initially (θ(0)) by the principle (4.6), using the initial conditions of u, and remains
constant for all calculations. The velocity of the nodes is calculated using equation
(4.8) over the subintervals of the discretized spatial domain, i.e., the mass within
each element is conserved. Note that for mass conserving problems the right-
hand side of (4.8) is zero, hence only u (or u initially (u(x, 0))) is required to
uniquely obtain w. Having updated the mesh node positions using w and a time
integration scheme for x, we update the solution of u from the principle (4.6)
using a constant value of θ and the updated nodal positions.

For a non-mass conserving problem (θ̇ ̸= 0) the value of θ̇ is calculated by in-
tegrating (4.8) over the entire spatial domain where the terms with the velocity
w are calculated using the boundary conditions of the problem. Knowing θ and
u (initially from u(x, 0)), equation (4.8) can be used over the subintervals of
the discretized spatial domain which allow the calculation of the node velocities.
Note here that the theory uses the concept of relative mass, i.e., the normalised
function u(x, t)/θ(t). To update the total mass θ and the new node locations by
θ̇ and w, a time integration scheme is required. Then the recovered solution of u
is obtained by the principle (4.6) using the updated θ and the updated position
of the nodes.

A necessary requirement for the moving mesh method based on conservation is
that the solution u(x, 0) must have compact support. To successfully apply the
moving mesh method, it is important that u maintains its compact support at all
times. Equation (4.8) can be used to obtain the nodal velocities uniquely at all
interior points provided the flux [uw] is known at a point and that u(x, t) > 0 in
the interior of the domain (compact support). To evaluate θ̇ by integrating (4.8)
over the entire domain, we assume that u(x, t) and w(x, t) are continuous up to
the boundary.

This thesis applies the conservation method used by Baines, Hubbard and Jimack,
but whereas they use a finite element method, we investigate the application of
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the finite volume method. The method is presented for the solution of non-linear
time-dependent PDEs with moving boundaries, using a moving mesh. We apply
this method only to one-dimensional problems and consequently refer to it as
moving mesh finite difference method throughout this thesis.

A similar approach is used in [104, 103] where the method was applied to a
one-dimensional moving boundary problems such as the mass-conserving porous
medium equation, Richards’ equation in hydrology, and the Crank-Gupta prob-
lem that does not conserve mass.

It is worth mentioning here the work of Watkins in [178] which provides the first
application of the moving mesh finite element method based on mass conservation
to a population system with a moving interface. This motivated our work in
Chapter 6 using a finite difference framework where we were able to compare and
validate the finite difference approach for a moving mesh based on conservation
against the finite element used in [178].

Our work is mainly concentrated on the application of the moving mesh finite
difference method based on mass conservation to one-dimensional population
systems with the aim to gain a great understanding of the mechanism involved,
and for analysis which may be expanded to more general situations. Note that
in the context of population dynamics, the ‘mass’ refers to the total mass of the
population, i.e., the number of individuals of a species.

We also demonstrate that the application of the method can be easily extended
to the radially symmetric two-dimensional case. An advantage of using finite
elements for the general two-dimensional case (instead of the radial case) is that
the method can be applied to more general domains.

Later in the thesis (Chapter 7), we introduce a new feature of the conservation
method for moving meshes, ideal for systems with coupled equations. We consider
the combined mass of the species involved in the system to be the quantity which
is preserved. Hence instead of allocating a separate mesh to solve each equation in
the system, we use a single moving mesh for all the equations where the solution
is then adjusted using the Arbitrary Lagrangian Euler equations. The mesh is
generated by preserving the total sum of the local masses at a point in time.
Hence a single moving mesh can be used in the overlapping regions and handles
moving interfaces and free boundaries. The approach is advantageous in cases
of coupled equations and overlapping domains, as the attractive aspect of the
technique is that only one velocity equation is required to update the mesh nodes
and hence avoids the need for interpolation of the meshes at each time step to
approximate the coupled terms. The combined mass procedure is general and
can be applied to many overlapping situations.
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In the next chapter, following the study of a well-known non-linear diffusion, the
Porous medium equation, we demonstrate the application of the moving mesh
method based on mass conservation to a two-cluster population system with
density-dependent diffusion.
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Chapter 5

Density-Dependent Diffusion

Following Chapter 2, Section 2.4, this chapter discusses density-dependent diffu-
sion and its effect in the well-established Porous Medium Equation. We illustrate
some of the properties of the PME including mass conservation and stationary
centre of mass in Section 5.2.2, which will be used later on for the application
of the moving mesh finite difference numerical approximation in Section 5.3. A
further property of the PME is similarity, in which invariance is used to obtain
self-similar solutions. We use these self-similar solutions to compare the numer-
ical solution to an exact solution through a convergence analysis in the Results
Section 5.3.2. In Section 5.3.4 we illustrate using numerical simulations some of
the properties of the PME such as the mass conservation and the convergence
of the numerical approximation to the self-similar solution. Then we derive the
Porous Medium Equation for a population model and in Section 5.4 we consider
a system of two clusters of the same population initially occupying different spa-
tial regions. We apply the moving mesh finite difference method based on mass
conservation to the two-cluster system by excluding the reaction terms (mass-
conserving problem) in Section 5.4.2 and including the reaction terms (non-mass
conserving problem) in Section 5.4.4. Once the two clusters overlap, the two
population groups are modelled as a united cluster by considering their com-
bined mass. Time snapshots of the results of the mass and non-mass conserving
cases are shown in Sections 5.4.2 and 5.4.4, respectively.
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5.1 The Porous Medium Equation
Recall from Section 2.4 that the rate of change of the density u with a density-
dependent diffusion takes the form,

∂u

∂t
=

∂

∂x

(
D(u)

∂u

∂x

)
, (5.1)

(see equation (2.14)).
Usually, the theory of density-dependent diffusion equations is restricted to func-
tions of the form D(u) = u giving the PDE

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
. (5.2)

The function D(u) in (5.1) is often chosen for physical or biological reasons,
or wherever there exist group invariant (similarity) solutions for (5.2). Equation
(5.2) is called the porous medium equation which can be derived from an empirical
law called Darcy’s Law [183]. The main applications of the porous medium
equation found in the literature are gas flowing through a porous medium [123],
nonlinear heat transfer [187], population dynamics [69] and groundwater flow
[26]. Here we consider its relationship with evolving species.

5.2 The Derivation of the PME from a Population
Model

Here, we show how the PME (5.2) arises out of a simple population model which
will then be used to construct a system of two population clusters. Although the
treatment of this chapter has been limited to a one-dimensional space, we derive
the model in an n-dimensional setting. The substitution n = 1 leads back to the
one-dimensional model.

Let us consider a hypothetical population in an n-dimensional space Rn (n =
1, 2, . . .). We denote the density of the population by u(x, t) so that the popula-
tion mass in an arbitrary region Ω ⊂ Rn at time t is given by

∫
Ω
u(x, t) dx. The

velocity by which individuals of the population are moving at space point x at
time t is given by a vector function v(x, t). Then the rate of increase of the popu-
lation in the domain Ω equals the inflow of the population through the domain’s
boundaries plus the addition/reduction of individuals through the reaction terms
f , that is,

d

dt

∫
Ω

u dx = −
∫
∂Ω

uv · n dσ +

∫
Ω

f(u,x, t) dx, (5.3)
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where n is the outward unit normal to the boundary ∂Ω of Ω and dσ is an
element of the boundary ∂Ω. Since Ω is independent of time and by applying the
divergence theorem to the first term on the right-hand side of (5.3) gives,∫

Ω

∂u

∂t
dx = −

∫
Ω

div(uv) dx+

∫
Ω

f(u,x, t) dx.

Since the domain is arbitrary,
∂u

∂t
+ div(uv)− f(u,x, t) = 0. (5.4)

The above equation is the equation of mass balance. It basically links a material’s
velocity and density functions and the material’s creation or removal.

In the population dynamics concept, individuals have the tendency to move to
neighbouring areas where the population density is lower than the region they
are momentarily occupying. This feature we wish to add to equation (5.4) by
supposing that members of the population move in the opposite direction of the
density gradient ∇u and the speed of the movement is a function of the density
u, implying that v = −ϕ(u)∇u.
Then equation (5.4) becomes,

∂u

∂t
= div(uϕ(u)∇u) + f(x,x, t). (5.5)

The simple choice of function ϕ(u) = 1 leads back to equation (5.2).

We describe a class of exact solutions to the radially symmetric PME that are
invariant under a scaling group in the variables and take the so-called self-similar
form [16].

5.2.1 Self-similar solutions

We seek solutions for the radially symmetric PME,

∂u

∂t
=

1

rk−1

∂

∂r

(
rk−1u

∂u

∂r

)
, (0 ≤ r ≤ b), (5.6)

where r is the radial coordinate and k = 1, 2, 3 is the number of spatial dimen-
sions. Setting k = 1 leads to the one-dimensional case, which is denoted in
Cartesian coordinates.

A derivation of the self-similar solutions of (5.6) is presented in [104] and takes
the form

u(r, t) = t−k/k+2

(
A− r2

2 (k + 2) t
2

k+2

)
, t ∈ [1,∞), (5.7)
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where A = E/(2k + 2) and E is a constant of integration.

For the purpose of demonstrating some of the properties of the PME and for
numerical comparisons, a specific set of parameters is chosen which will be used
later in this chapter. As in [104], we consider the constant of integration E =
2k + 2 leading to A = 1.

If [0, b(t)] is the support of u, by setting u(r, t) = 0 we can find an expression for
the moving boundary b (where u = 0), as

b(t) =

√
2(k + 2)t

2
k+2 , t ∈ [1,∞). (5.8)

Substituting expression (5.8) back in equation (5.7), we have

u(r, t) =
1

t
k

k+2

(
1− r2

b(t)2

)
t ∈ [1,∞). (5.9)

Initial conditions for the self-similar solutions which are going to be used later
on for the numerical comparison can be found by setting t = 1.
At time t = 1,

u(r, 1) =

(
1− r2

b(1)2

)
and the initial position (t = 1) of the moving boundary is given by

b(1) =
√

2(k + 2).

Apart from the self-similarity property of the PME, it is useful to mention the two
relevant properties of the PME on which our numerical approach relies. These
properties are also discussed in [160].

5.2.2 Properties of the PME in one-dimension

Consider the following one-dimensional (Cartesian coordinates) PME

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
(5.10)

with boundary conditions

u = 0 at x = a(t), b(t), t ≥ 0 (5.11)

at the edge of the support.
We prove two well-established properties in which our numerical approach relies
upon the conservation of mass, and stationary centre of mass.
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Conservation of global mass

The first property is the conservation of the global mass in time.
Using the Leibniz Integral rule,

d

dt

∫ b(t)

a(t)

u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+ u(b, t)

db

dt
− u(a, t)

da

dt

and substituting equation (5.10) gives,

d

dt

∫ b(t)

a(t)

u(x, t) dx =

∫ b(t)

a(t)

∂

∂x

(
u(x, t)

∂u

∂x

)
dx+ u(b, t)

db

dt
− u(a, t)

da

dt

= u(b, t)
∂b

∂x
− u(a, t)

∂a

∂x
+ u(b, t)

db

dt
− u(a, t)

da

dt
.

Using the boundary conditions given in (5.11) we obtain,

d

dt

∫ b(t)

a(t)

u(x, t) dx = 0. (5.12)

Hence, we have shown that the integral of the density, therefore the mass, is
constant in time.

Stationary centre of mass

The second property is that the PME has a stationary centre of mass.
The average position of the centre of mass, say χ(t), in one dimension is defined
by

χ(t) =

∫ b(t)

a(t)
x u(x, t) dx∫ b(t)

a(t)
u(x, t) dx

In order to prove that the centre of mass is stationary, it is sufficient to show that

d

dt

∫ b(t)

a(t)

x u(x, t) dx = 0,

since the integral is a measure of the average distance of x from the origin for
any a(t),b(t), at which u = 0.
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We again make use of the Leibniz integral rule,

d

dt

∫ b(t)

a(t)

x u(x, t) dx =

∫ b(t)

a(t)

x
∂u

∂t
dx+ u(b, t) b(t)

db

dt
− u(a, t) a(t)

da

dt
.

Substituting the original PDE (PME) (5.10)

d

dt

∫ b(t)

a(t)

x u(x, t) dx =

∫ b(t)

a(t)

x
∂

∂x

(
u(x, t)

∂u

∂x

)
dx+u(b, t) b(t)

db

dt
−u(a, t) a(t)

da

dt
,

where the last two terms vanish due to the boundary conditions in (5.11). Ap-
plying the integration on the first term on the right-hand-side gives,

d

dt

∫ b(t)

a(t)

x u(x, t) dx = b(t)u(b, t)
∂b

∂x
− a(t)u(a, t)

∂a

∂x
−
∫ b(t)

a(t)

u(x, t)
∂u

∂x
dx.

Again, we can eliminate the first two terms on the right-hand-side using the
boundary conditions, giving,

d

dt

∫ b(t)

a(t)

x u(x, t) dx = −
∫ b(t)

a(t)

u(x, t)
∂u

∂x
dx.

Rearranging the final term on the right-hand-side gives

d

dt

∫ b(t)

a(t)

x u(x, t) dx = −1

2

∫ b(t)

a(t)

∂

∂x

(
u(x, t)2

)
dx

= −1

2

(
u(b, t)2 − u(a, t)2

)
. (5.13)

Again, applying the boundary condition (5.11) to equation (5.13) the terms on
the right-hand-side vanish, giving

d

dt

∫ b(t)

a(t)

x u(x, t) dx = 0.

Hence, we have shown that the centre of mass is stationary.

5.3 A Moving Mesh Finite Difference Method for
the PME

We now move on to the numerical solution of the PME (5.10) using the moving
mesh finite difference method based on conservation. As shown above, one of the
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properties of the PME with zero boundary conditions is that it conserves its mass
(5.12). Hence in this section, it is consistent to apply the concept of partial mass
to any interval in order to numerically approximate the mass-conserving PME
equation.

We assume the initial data is symmetrical about its centre of mass, taken to be
the origin, therefore we set the left-hand side boundary a(t) = −b(t).
The boundary conditions of (5.10) are then

u(−b(t), t) = u(b(t), t) = 0 (5.14)

As shown above, the total mass of (5.10) is conserved and the centre of mass is
fixed in time, from which it follows that the solution retains the symmetry of the
initial data for all time about the line x = 0. We can therefore model only half
of the region, i.e.,

∂u

∂t
=

∂

∂x

(
u
∂u

∂x

)
, t > 0, x ∈ (0, b(t)) (5.15)

with the conditions
u (b (t) , t) = 0 u(b(t), t)

db

dt
= 0 (5.16)

at the moving boundary b(t).
Due to symmetry, two more conditions arise at x = 0, given by,

∂u

∂x
= 0 and

dx

dt
= 0 at x = 0. (5.17)

5.3.1 Conservation of partial masses

We recall from (5.12) that the integral of a solution of the PME (the mass) is
conserved in time, i.e.,

θ̇(t) =
d

dt

∫ b(t)

0

u(x, t) dx = 0.

In such cases, where θ(t) remains constant for all t ≥ 0, the theory is based
on the conservation of partial masses, i.e., since the total mass is constant in
time, it is consistent to suppose that the mass within each interval between the
nodes is also constant. We introduce a time-dependent space coordinate x̃(x, t)
which coincides instantaneously with the fixed coordinate x. Consider two such
coordinates, x̃(x1, t) and x̃(x2, t), in (0, b(t)), abbreviated to x̃1(t) and x̃2(t). The
conservation of partial masses is
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∫ x̃2(t)

x̃1(t)

u(ς, t) dς = γη, (5.18)

where γη is constant in time and η indicates the interval (x̃1(t), x̃2(t)).
Therefore, using the Leibniz integral rule, the rate of change of the mass in the
subinterval is given in the form

d

dt

∫ x̃2(t)

x̃1(t)

u(ς, t) dς =

∫ x̃2(t)

x̃1(t)

(
∂u(ς, t)

∂t
+

∂

∂ς
(u(ς, t)w(ς, t))

)
dς,

where w is a local velocity given by w(x̃, t) = dx̃
dt

∣∣∣
x̃=x

.
Since the mass within each interval is constant,

0 =

∫ x̃2(t)

x̃1(t)

(
∂u(ς, t)

∂t
+

∂

∂ς
(u(ς, t)w(ς, t))

)
dς. (5.19)

By substituting the original PDE (5.10) in (5.19) we can obtain a unique solu-
tion for the local velocity w by integrating and setting one node as an anchor
point. Since we have shown above that the centre node of the domain, x = 0, is
stationary, it provides an obvious choice of an anchor point. Another convenient
choice of the anchor point is at the boundary x = b(t).

Discretisation of the domain

We now define a finite difference method based on this theory, with the following
notation. Given a time step ∆t > 0 and a fixed number of spatial nodes N + 1,
choose discrete times tn = n∆t, n = 0, 1, . . . , and discretise the interval at each
discrete time tn using the nodal points xn

i = x̃i(t
n), i = 1, 2, . . . , N +1 , for which

0 = x1 < xn
2 < . . . < xn

N+1 = bn.

The approximations un
i ≈ u(x̃i(t

n), tn) and wn
i ≈ w(x̃i(t

n), tn) denote the solution
and mesh velocity at these nodes.

Mesh velocities

Taking the anchor point at x = 0 and substituting the original PDE in (5.19),
gives

∫ xn
i

0

(
∂

∂x

(
u
∂u

∂x

)
+

∂

∂ς
(u(ς, t)w(ς, t))

)
dx = 0. (5.20)
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Note here that the interval of (5.19) between the two successive nodes (x̃1(t), x̃2(t))
is now taken to be the interval from the fixed node x1 = 0 to a moving internal
node xn

i .
Finally, performing the integration to (5.20)[

u
∂u

∂x
+ uw

]xn
i

0

= 0. (5.21)

From the boundary conditions given in (5.17), equation (5.21) becomes,

wn
i = −1

u

(
u
∂u

∂x

) ∣∣∣
xn
i

= −∂u

∂x

∣∣∣
xn
i

, (i = 2, . . . , N), (5.22)

while the velocity at x0 is zero and, at the moving boundary xn
N+1, the velocity

wn
N+1 is linearly extrapolated using wn

N−1 and wn
N .

Updating the nodal positions

The new mesh xn+1
i is obtained from wn

i by a time-stepping scheme, for example,
the Euler time-stepping scheme,

xn+1
i = xn

i +∆twn
i , (i = 1, . . . , N + 1). (5.23)

Hence, given a mesh xn
i with corresponding solution un

i , we can calculate the
updated mesh xn+1

i by computing the mesh velocity wn
i .

Although only first-order in time this time-stepping scheme serves to test the spa-
tial theory of the method. More sophisticated schemes can easily be substituted.

Recovering the solution

Once the updated mesh has been determined, the updated solution un+1
i is given

by (5.18) using a mid-point approximation of the integral, i.e.,∫ xn+1
i+1

xn+1
i−1

un+1
i dx = γ(xi−1, xi+1)

un+1
i =

γ(xi−1, xi+1)

xn+1
i+1 − xn+1

i−1

, (i = 2, . . . , N). (5.24)

The population density un+1
1 can be approximated from the boundary condition

given in (5.17) by un+1
1 = un+1

2 while the population density un+1
N+1 is given by the

boundary condition (5.16).
The finite-difference moving mesh algorithm for mass-conserving problems is then
as follows.
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Algorithm

Choose initial node positions x0
i , with corresponding solution values u0

i > 0, and
use them to determine the approximate masses γ(x

0
i−1, x

0
i+1), i = 2, . . . , N , of

(5.18)
γ(xi−1, xi+1) = u0

i (x
0
i+1 − x0

i−1), (i = 2, . . . , N).

Then at each time step, we proceed by

1. Calculating the velocity at each node wn
i , i = 2, . . . , N , by equation (5.22).

The velocity wn
1 is zero at all times while the velocity wn

N+1 is evaluated by
extrapolation.

2. The new mesh is obtained at the time by the explicit Euler time-stepping
scheme (5.23).

3. Finally, having updated the new node positions, we can recover the solution
un+1
i , i = 2, . . . , N , using (5.24). The population density at x1 is given in

(5.17) by un+1
1 = un+1

2 while un+1
N+1 is given by the boundary condition (5.16).

5.3.2 Results of the MMFDM

In this section, we present results from applying the moving mesh method of
Section 5.3 to the one-dimensional Cartesian equation (5.14). We run the results
for 101 and 21 discretised nodes (N = 100, N = 20) using the self-similar solution
as the initial data.

Figure 5.1a represents time snapshots of the evolution of the approximated solu-
tion using the self-similar initial conditions. We initially divided the domain into
100 (N = 100) equally spaced nodes and ran the simulations up to t = 10 using
the time-step value of ∆t = 1/N2 = 10−4. Figure 5.1b shows the evolution of
the boundary xN+1(t), up to t = 10. The approximated position of the boundary
using the numerical method is plotted by a dotted black line while the exact
position evaluated by the self-similar solutions is plotted by a solid blue line. We
have observed a minimal relative error between the approximated and the exact
boundary position of 1.74 × 10−6. The last figure (c) of Figure 5.1 shows the
mesh trajectories. We observe a smooth even spread of the nodes, without mesh
tangling.

The same sequence of results is shown in Figure 5.2 using the self-similar initial
condition but with 21 spatial nodes instead of 101, with the corresponding time
step size ∆t = 1/N2 = 2.5× 10−3.
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(b) The evolution of the boundary position for t = 11. The relative error
at xN+1(10) is 2.42× 10−6.
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(c) The evolution of the mesh trajectory for t = 11.

Figure 5.1: The PME approximation with self-similar initial conditions with
N = 100 and ∆t = 1/N2 = 10−4.
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(b) The evolution of the boundary position for t = 11. The relative error
at xN+1(10) is 2.45× 10−6.
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(c) The evolution of the mesh trajectory for t = 11.

Figure 5.2: The PME approximation with self-similar initial conditions with
N = 20 and ∆t = 1/N2 = 2.5× 10−3.
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5.3.3 Convergence

In this section we examine the convergence of the finite difference moving mesh
method as the number of nodes N increases while ∆t decreases. We solve for
t ∈ [t0, T ] and compute results for N = 10 × 2N̂−1, N̂ = 1, . . . , 6. In order to
compare the results for different values of N̂ , we denote the points of the mesh for
a particular value N̂ by xi,N̂(t), i = 0, . . . , N . We then compute both x2N̂−1j,N̂(t)

and u2N̂−1j,N̂(t) ≈ u(x2N̂−1j,N̂(t), t) for each j = 0, . . . , 10 as N̂ increases. This new
notation allows comparison of xi,N̂ and ui,N̂ at eleven different points, determined
by i = 2N̂−1j, j = 1, . . . , 10, for various N . We have denoted the boundary
position at each case by xN+1(t) = b(t).

Let us denote exact solution by ū2N̂−1j,N̂(t) at the calculated mesh points and
x̄N+1(t) = b̄(t) the boundary position. In order to balance the spatial and tem-
poral error and recall the Euler time-stepping is used, we take ∆t = O

(
1
N2

)
anticipating that the errors | ū2N̂−1j,N̂(t) − u2N̂−1j,N̂(t) | and | b̄(t) − b(t) | will
decrease as N̂ increases, for each j = 0, . . . , 10.
For ease of exposition, we set 2N̂−1 = κ.

We measure the relative errors by calculating the ℓ2 norms of ui, i = 0, . . . , N
and the maximum normal of b, i.e.,

EN(u) =

√∑N
i=0(ūκj(T )− uκj(T ))2∑N

i=0(ūκj(T ))2

and

EN(b) =
b̄(T )− b(T )

b̄(T )
,

for N̂ = 1, . . . , 6, N = 10, 20, 40, 80, 160, 320 where κ = 2N̂−1.

We may examine the order of convergence with respect to space and time by
looking at the rate at which the differences between successive errors decrease.

We assume
EN = A(∆x)q + B(∆t)p,

where the EN is the error for each N , A and B are constants and q and p are the
rates of convergence in respect to space and time, respectively. Since we are only
accounting for the spatial errors and by halving ∆x, we have

EN = A(∆x)q and E2N = A(∆x/2)q.
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To eliminate A we divide E2N by EN ,

log2

(
E2N

EN

)
= q log2

(
1

2

)
giving the following expression for q

q = − log2

(
E2N

EN

)
.

Therefore, the order of convergence of the approximated solution u and the
boundary node b are calculated respectively by,

q1 = − log2

(
E2N(u)

EN(u)

)
and q2 = − log2

(
E2N(b)

EN(b)

)
.

Since each step of our scheme is second-order in space and first-order in time,
and recalling that ∆t = O(1/N2) we expect to observe q1, q2 ≈ 2.

We solve for t ∈ [1, 10] and compute results for N = 10× 2N̂−1 for N̂ = 1, . . . , 6

using the time-step value of ∆t = 0.04(4−N̂). Initially, the mesh nodes are equi-
spaced for all cases.

The self-similar initial conditions, at t = 1, are the ones derived in Section 5.2.1.
More precisely the initial self-similar solutions are

u(x, 1) = 1− x2

6
, b(1) =

√
6. (5.25)

The exact solution is obtained using similarity, i.e.,

ū(x, t) =
1

t1/3

(
1− x2

b(t)2

)
, (5.26)

cf. (5.9), and the exact position of the boundary can be obtained by setting u = 0
in (5.26),

x̄N+1 = b̄(t) = t1/3
√
6,

cf. (5.8).
The convergence results are shown in Table 5.1. We observe a decrease in the
relative errors EN(u) and EN(b) as N increases and an order of convergence which
tends to approximately 2 as N tends to infinity.
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N EN(u) q1 EN(b) q2
10 3.76× 10−4 2.42× 10−4

20 8.38× 10−5 2.16 6.06× 10−5 2.00
40 1.97× 10−5 2.09 1.51× 10−5 2.00
80 4.78× 10−6 2.04 3.78× 10−6 2.00
160 1.18× 10−6 2.02 9.46× 10−7 2.00
320 2.92× 10−7 2.01 2.37× 10−7 2.00

Table 5.1: Relative errors EN(u) and EN(b) with the corresponding rates of
convergence q1 and q2 for the porous medium equation using ∆t = 0.04(4−N̂).

5.3.4 Illustrations of the properties of the PME

In this section, we illustrate the capability of the numerical method to imitate
some of the properties of the PME relevant to population dynamics, e.g. mass
conservation and the convergence to the self-similar solution [161].

In Figure 5.3 we show that the similarity solution is an attractor. We have plotted
in blue dotted lines the two approximated solutions, u1(x, t) and u2(x, t), using
the non-self similar initial conditions against the exact solution ū(x, t) using the
self-similar solutions denoted by the black solid line. The initial conditions used
for the self-similar solutions are the ones denoted in (5.25) where the non-self-
similar initial conditions used for the simulation shown in Figure 5.3 are

u1(x, 0) = 0.1361(x− 1)(−5− x), (−5 ≤ x ≤ −2.04)

u1(x, 0) = 1.224(1 + x)(−3− x), (−2 ≤ x ≤ −1)

u2(x, 0) = 1.224(1− x)(3− x), (1 ≤ x ≤ 2)

u2(x, 0) = 0.1361(x+ 1)(5− x), (2.04 ≤ x ≤ 5).

Initially, the three curves are set to have equal areas. As shown above, since the
PME conserves the mass (i.e., the area under the curve) during the evolution, we
would expect the three curves to retain their equal mass for all times and since
the non-self similar solutions will approach the exact solution, it is expected that
the three curves will meet at later times. We can clearly see in Figure 5.3 that as
time passes the non-self-similar results converge to the self-similar solution where
at t = 100000 the three curves almost completely overlap.
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Figure 5.3: The PME solutions with non self-similar initial conditions u1(x, 0)
and u2(x, 0) and the exact solution ū(x, t) using the self-similar initial conditions
for m = 1, N = 100, ∆t = 1/N2 = 10−4. All curves have the same enclosed area.
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So far we have demonstrated how the Porous Medium equation can be derived
from a simple population model and discussed and proved some of its properties.
Moreover, we showed the application of the MMFDM based on mass conser-
vation for the PME and observe the convergence of the numerical results. In
the following section, we introduce a two-cluster population model with density-
dependent diffusion. The system is numerically solved using the moving mesh
finite difference method based on mass conservation.

5.4 A Moving Mesh Finite Difference Method for
a One-Dimensional Two-Cluster Population
Model with Density-Dependent Diffusion

Now let us consider two clusters of the same population initially occupying dis-
tinct spatial regions. We denote the population densities of each cluster at space
point x and time t by u1(x, t) and u2(x, t). The equation for the rate of change
of each cluster population density is given by

∂up

∂t
=

∂

∂x

(
up

∂up

∂x

)
+ αup(1−

up

K
), (5.27)

with p = 1, 2, (cf. (5.5)). The reaction term is the logistic growth presented by
Verhulst in 1845 [162] where α represents the population rate of growth and K
is the carrying capacity. The boundary conditions of each cluster are defined at
the edge of the support,

up = 0 at x = ap(t), bp(t), t > 0, (5.28)

where a1(t), b1(t) a2(t), b2(t) describe the boundaries of the population densities
u1 and u2 respectively.

Each cluster is initially assigned a unique mesh which corresponds to the spatial
region each cluster occupies. Then the moving mesh finite difference method is
applied to each cluster individually up to the time point where the two groups
overlap. Once the populations intersect, then a new problem is formed with new
compact support. For better understanding imagine two water drops on a flat
surface. The two drops initially expand until they intersect forming a joined,
bigger drop. The new drop has different properties, for example, greater mass
and hence different velocity by which the drop is expanding on the surface.
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5.4.1 Mass conserving problem

Setting α in (5.27) to zero leads back to the global mass conserving example given
in (5.15). Hence, following the theory of partial mass conservation as described
in Section 5.3.1, the numerical solution for each equation in the system (5.27)
using the moving mesh method is as follows.
The constant total mass is given by

θ =

∫ b(t)

a(t)

u(x, t) dx.

Here the density u is general and represents both u1 and u2. To proceed with solv-
ing a mass conserving problem first consider a mesh given by xi, i = 1, . . . , N +1
such that

a(t) = x1(t) < x2(t). . . . . . . < xN(t) < xN+1 = b(t). (5.29)

As described in Section 5.3.1, for mass conserving problems, the moving mesh
method is based on the conservation of partial masses, supposing that the mesh
nodes are moving in such a manner that the mass within node intervals is con-
stant, i.e., ∫ x̃i(t)

a(t)

u(x, t) dx = uη∆x̃η = γη, (5.30)

where η is the interval (a(t), x̃i(t)) and x̃i represents the N + 1 mesh nodes
which coincide instantaneously with x and vary with time.

Note that the integral in equation (5.18) is between two neighbouring points while
in equation (5.30) η is the interval between the left-hand-side moving boundary
and any inner node. The partial masses in the intervals of both equations are
constant in time, therefore the theory of mass conservation applies in both cases.
Also, later on in Section 5.3.1 (equation (5.20)) we set one of the nodes x̃1 and
x̃2 to denote the anchor point.

To update the density u using equation (5.30), we require the updated node
positions. Therefore equation for the mesh velocity is needed. We define the
velocity at a node i to be

w(x̃i(t), t) = w̃i(t) =
dx̃i

dt
.

Hence, for a given mesh x̃i(t) and solution ũi(t) = u(x̃i, t), we compute the mesh
velocity w̃i(t) = w(x̃i, t) , and subsequently the updated mesh, to ultimately
recover the updated solution on the new mesh.
Details are given below.
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Determining the mesh velocity

We obtain an expression for the mesh velocity by differentiating (5.30) with re-
spect to time and applying the Leibniz integral rule, giving

∫ x̃i(t)

a(t)

∂u

∂t
dx+ ũi(t)w̃i(t)− ũ1(t)w̃1(t) = 0.

Using the boundary conditions (5.28)

w̃i(t) = − 1

ũi(t)

∫ x̃i(t)

a(t)

∂u

∂t
dx (5.31)

where ∂u
∂t

is given by the PDE (5.27). Thus, the velocity of the interior nodes
where ũi > 0 is given by (5.31) and the boundary node velocities w̃1(t), w̃N+1(t)
can be evaluated from extrapolation.

Advancing the nodal positions in time

We choose a time step values ∆t where tn = n∆t for ∆t > 0, n = 0, 1, . . . , with
the approximations xn

i ≈ x̃i(t
n) , un

i ≈ ũi(t
n), wn

i ≈ w̃i(t
n). Knowing the mesh

positions xn
i and having evaluated the mesh velocity wn

i , use a time-stepping
scheme to update the mesh xn+1

i , like the first-order Euler time-stepping scheme
(5.23).

Recovering the solution

To approximate the solution un+1
i using the updated node locations use equation

(5.30), as in (5.24) for the interior nodes. The solution at the boundaries un+1
1

and un+1
N+1 is determined by the boundary conditions (5.28).

5.4.2 Moving mesh finite difference solution for equation
(5.27) when α = 0

For the solution of equation (5.27) when α = 0 we follow the theory described in
Section 5.3.1 for u1 and u2 independently until the two clusters overlap. Then,
we consider the new mass of the population density u3 at a specific location to
be the combined mass of the densities u1 and u2 and the nodal velocities are
constructed by supposing that fractions of the mass are held constant in time,
i.e.,

(u1 + u2)η∆x̃η = (u3)η∆x̃η = γη,
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where η here defines the interval between two nodes in the x3 mesh.
The PDE which describes the rate at which the population density u3 changes in
time can be found using (5.27), by setting up = u2 + u1 when α = 0, giving

∂u3

∂t
=

∂

∂x

(
u3

∂u3

∂x

)
.

Here, we consider that regions for which u1 and u2 are non-zero are disjoint.

The algorithm for solving (5.27) when α = 0 is as follows.

Algorithm

For each equation of up (p = 1, 2):
Create a unique mesh under each compact support and choose the initial node
positions xn

p(i) of each mesh, with corresponding approximate solution values
u0
p(i) > 0 (see Figure 5.4). For all time steps that the populations occupy district

regions (i.e., x1(N+1) < x2(1)) we proceed at each time-step by

1. Calculating the velocity at each node wn
p(i), i = 2, . . . , N by (5.31) by sub-

stituting ∂u
∂t

from (5.27) and performing the integration of the l.h.s

wn
p(i) = − 1

up

(
up

∂up

∂x

) ∣∣∣
xn
p(i)

= −∂up

∂x

∣∣∣
xn
p(i)

, (i = 2, . . . , N)

The outer moving boundary velocities wn
p(1) and wn

p(N+1) are extrapolated.

2. The new mesh is obtained by the explicit Euler time-stepping scheme given
in (5.23).

3. Finally, having updated the new node positions, we can recover the solution
un+1
p(i) using (5.24).

The algorithm above is carried out up to the time-step that the two clusters
intersect (i.e., x1(N+1) > x2(1)). Then we proceed with the algorithm concerning
the combined mass of the two clusters:

Set the new mesh x3(i) of the joined masses to be from x1(1) to x2(N+1) (see
Figure 5.5) and set a3(t) and b3(t) to be the two edges of the u3 support. Then,
interpolate both u1 and u2 solutions on the new mesh x3(i) (see Figure 5.5). The
u3 initial condition is the sum of the densities u1 and u2 on the x3 mesh. Having
defined u3 and x3, at each time-step we proceed with the steps presented in the
algorithm but now p = 3.
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Figure 5.4: Mesh when x1(N+1) < x2(1).

Figure 5.5: Mesh when x1(N+1) ≥ x2(1).

Results

For the following set of results, we have set both clusters to have the same mass
but occupy distinct regions initially. The cluster with population density u1

is located, at t = 0, in the region a1(0) = −5 to b1(0) = −1 and population
two with density u2 occupies the region a2(0) = 1 to b2(0) = 5. The initial
conditions for u1 and u2 are shown in Figure 5.6 with the solid green and red
colour respectively. Figure 5.6 shows the evolution of u1 (green) and u2 (red)
from the initial conditions (t = 0) up to the time point where the two meshes
overlap, i.e., x1(N + 1) > x2(1). Then the new population density u3 (blue) is
created by adding the two population densities u1 and u2. Figure 5.7 shows the
evolution of the u3 (blue) solution plotted together with the evolution of the self-
similar solution (exact) u (black), while at later times, the approximate solution
u3 approaches the exact solution u, as shown in Figure 5.8.
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Figure 5.6: The evolution of u1 (green) and u2 (red) in time and the formation
of u3 (blue).
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Figure 5.7: The evolution of u3 (blue) and the self-similar solution u (black).
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Figure 5.8: At later times the two solutions, u3 (blue) and u (black), almost
completely overlap.

5.4.3 Non-mass conserving problem

For non-mass conserving problems (α ̸= 0 in equation (5.27)), the theory for the
moving mesh method relies on the assumption that normalised or partial mass
fractions are conserved in time. We use the same mesh definition given in Section
5.3.1 where the time-dependent variable x̃(t) represents the nodes of the mesh.
The conserved normalised partial masses are given by,

1

θ(t)

∫ x̃i(t)

a(t)

u(x, t) dx = γη, (5.32)

where γη remains constant in time with η describing the interval (a(t), x̃i(t)).
The procedure is as follows.
After the discretization of the domain into N + 1 nodes, given a mesh x̃i(t),
and solution ũi(t) = u(x̃i(t), t), i = 1, . . . , N + 1 we evaluate the total mass θ(t)
directly from the integral of the density under the whole compact support, i.e.,

θ(t) =

∫ b(t)

a(t)

u(x, t) dx. (5.33)

To update the solution u at the forward time level using equation (5.32), it is
required to know the updated value of the total mass θ and the new x̃ positions.
Therefore, equations for the rate of change of the total mass θ̇(t) and the velocity
of the nodes w̃i(t) are required. Having found θ̇(t) and w̃i(t) the mesh and total
mass are updated simultaneously using a time-stepping scheme. This enables the
recovery of the updated solution on the new mesh. A more detailed procedure is
given below.
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Determining the rate of change of the total mass

The equation for the rate of change of the total mass θ(t) can be obtained by
differentiating (5.33) with respect to time and applying the Leibniz integral rule,
giving

θ̇ =
d

dt

∫ b(t)

a(t)

u(x, t) dx =

∫ b(t)

a(t)

∂u

∂t
dx+ ũb(t)w̃b(t)− ũa(t)w̃a(t).

Using the boundary conditions (5.28),

θ̇(t) =

∫ b(t)

a(t)

∂u

∂t
dx, (5.34)

where ∂u
∂t

is given by (5.27) for u1 and u2.

Determining the mesh velocity

The equation for the mesh velocities w̃i(t) can be obtained by differentiating
(5.32) with respect to time and applying the Leibniz integral rule, giving

θ̇(t)γη =
d

dt

∫ x̃i(t)

a(t)

u(x, t) dx =

∫ x̃i(t)

a(t)

∂u

∂t
dx+ ũi(t)w̃i(t)− ũ0(t)w̃0(t).

Here η refers to the interval (a(t), x̃i(t)).
From the boundary conditions (5.28), the velocity of the interior nodes is given
by

w̃i(t) =
1

ũi(t)

(
θ̇(t)γη −

∫ x̃i(t)

a(t)

∂u

∂t
dx

)
, (5.35)

where ∂u
∂t

is given by (5.27) for u1 and u2, provided that ũi(t) ̸= 0. Equation
(5.35) hold for the interior nodes i = 2, . . . , N while the velocity of the boundary
nodes w̃1 and w̃N+1 can be extrapolated from the internal mesh velocities.

Advancing the nodal positions and the total mass

As in Section 5.4.2, we choose a time step value ∆t where tn = n∆t for ∆t > 0,
n = 0, 1, . . . , with the approximations xn

i ≈ x̃i(t
n) , un

i ≈ ũi(t
n), wn

i ≈ w̃i(t
n),

θn ≈ θ(tn) and θ̇n ≈ θ̇(tn). Knowing θn and the mesh positions xn
i and having

evaluated the rate of change of total mass θ̇n and the mesh velocity wn
i , use the

Euler time-stepping scheme (5.23) to update the total mass θn+1 and mesh xn+1
i .
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Recovering the solution

To approximate the solution un+1
i , equate (5.32) between two points x̃i+1 and

x̃i−1 at time levels tn+1 and t0. After a second-order approximation the solution
for un+1

i is given by

1

θn+1

(
xn+1
i+1 − xn+1

i−1

)
un+1
i =

1

θ0
(
x0
i+1 − x0

i−1

)
u0
i , (5.36)

for i = 2, . . . , N . The solution at the boundaries un+1
1 and un+1

N+1 is determined by
the boundary conditions (5.28).

5.4.4 Moving mesh finite difference solution for equation
(5.27) when α ̸= 0

We follow the theory described above of the moving mesh method for non-mass
conserving problems to solve equation (5.27) when α ̸= 0. We apply the theory
on both u1 and u2 separately until the two clusters intersect. Then, for the non-
mass conserving problem, we are considering the mass at a specific location to be
the combined mass of the densities u1 and u2. In the conservation method, the
nodal velocities are constructed by supposing that fractions of the corresponding
normalised mass are held constant in time, i.e.,

1

θ1 + θ2

∫ b(t)

a(t)

(u1 + u2) dx =
1

θ3(t)

∫ b(t)

a(t)

u3(t) dx = γη,

where η describes the interval between two nodes in the x3 mesh.
The PDE which describes the rate at which the population density u3 changes in
time can be found using (5.27), by setting u3 = u2 + u1, giving

∂u3

∂t
=

∂

∂x

(
u3

∂u3

∂x

)
+ αu3

(
1− u3

K

)
and the algorithm for solving (5.27) when α ̸= 0 is as follows.

Algorithm

For each equation of up (p = 1, 2):
The two clusters are each assigned a unique mesh with initial node position x0

p(i),
with corresponding approximate solution values u0

p(i) > 0 (see Figure 5.4). For all
time-steps that the populations occupy district regions, i.e., x1(N+1) < x2(1) (see
Figure 5.4) we proceed at each time-step by
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1. Compute θ̇np from (5.34) by substituting (5.27) and performing the integra-
tion on the left-hand side, giving,

θ̇np =

(
up

∂up

∂x

) ∣∣∣bnp
anp

+

∫ bnp

anp

αup

(
1− up

K

)
dx,

for p = 1, 2, where the integral of the reaction terms can be evaluated using
the trapezoidal rule.

2. Calculating the velocity at each node wn
p(i), i = 2, . . . , N by (5.35) by sub-

stituting ∂u
∂t

from (5.27) and performing the integration of the l.h.s

wn
p(i) = − 1

un
p(i)

(
θ̇np γη − up

∂up

∂x

∣∣∣
xn
p(i)

−
∫ xn

p(i)

anp

αup

(
1− up

K

)
dx

)
,

(i = 2, . . . , N),

for p = 1, 2, where η describes the interval (an, xn
p(i)).

Again, the integral of the reaction terms can be evaluated using the trape-
zoidal rule and the outer moving boundary velocities wn

p(1) and wn
p(N+1) are

extrapolated.

3. Update the new mesh and the total mass by (5.23).

4. Finally, having updated the new node positions, we can recover the solution
un+1
p(i) using (5.36).

The above algorithm is carried out up to the time-step that the two clusters
intersect (i.e., x1(N+1) > x2(1)). Then we proceed with the algorithm concerning
the combined mass of the two clusters:

Set the new mesh x3(i) of the joined masses to be from x1(1) to x2(N+1) (see
Figure 5.5) and set a3(t) and b3(t) to be the two edges of the u3 support. Then,
interpolate both u1 and u2 solutions on the new mesh x3(i) (see Figure 5.5). The
u3 initial condition is the sum of the densities u1 and u2 on the x3 mesh. Having
defined u3 and x3, at each time-step we proceed with the steps presented in the
algorithm but now p = 3.

Results

The initial conditions used for the following set of results are shown in both
Figures 5.9 and 5.10 with solid green and red colour for u1 and u2, respectively.
Population with density u1 is set to initially occupy the region a1(0) = −3 to
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b1(0) = −1 and u2 is initially located at a2(0) = 1 to b2(0) = 5. For the following
set of results, we have used α = 0.4 and K = 1. Figure 5.9 shows the evolution of
u1 and u2 in time until the two clusters intersect and the new population density
u3(blue) is formed. Figure 5.10 is an illustration of the evolution of u3 in time.
The population is expanding in the domain forming one uniform hump while its
mass is getting greater in time due to the reaction terms. We observe a smooth
transition between algorithm 1 and algorithm 2.
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Figure 5.9: The evolution of u1 (green) and u2 (red) in time and the formation
of u3 (blue).
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Figure 5.10: The evolution in time of u3 (blue and black).
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5.5 Summary
The PME is of great interest to both pure mathematicians and applied scientists
and it is used to describe many other processes than diffusion including heat
transfer and fluid flow.

The choice of the PME by many applied scientists is mainly due to its properties,
which we have discussed in this chapter. Those properties make the moving mesh
method a natural choice for the approximation solution of the PME as the mesh
nodes follow the flow by the mass conservation.

The significance of the PME to population dynamics is that it shows that through
nonlinear diffusion there are solutions with moving compact support that are con-
servative with a finite boundary velocity (unlike Fickian diffusion which requires
infinite support). Also approximations can be computed with a moving mesh
conservation method that imitates these properties. Moreover, source terms can
be incorporated using relative conservation.

By the self-similar solution, we were able to compare the numerical solution with
the exact solution and concluded that the moving mesh finite difference method
is accurate. The numerical solution and the mesh appeared to have second-order
convergence.

We have also demonstrated the application of the moving mesh method based
on mass conservation to a two-cluster population system with non-linear diffu-
sion initially occupying distinct domains. Since the two clusters are of the same
species a natural way to solve the system is to use the combined mass of the
clusters when the two groups overlap. We observed smooth stable results and
the transition from unique masses to the combined was processed smoothly. The
idea of combining the masses of the two clusters and hence solving the system
on a single moving mesh gives the motivation for the new feature of the moving
mesh method based on conservation which is presented in Chapter 7.

The subsequent population systems consider the standard Fickian diffusion to
describe species diffusion, however, the non-linear density-dependent diffusion
studied in this chapter is applied closely at the end of the thesis on an epidemic
model.

The following chapter considers the application of the moving mesh finite dif-
ference method based on mass conservation on a system of two extremely com-
petitive species. Due to the high competition, the two species are spatially seg-
regated, and separated by a moving interface. Hence, each species occupies a
distinct region in space and they annihilate each other by a moving interface.
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The rest of the thesis is composed as a series of papers with Chapter 6 and
Chapter 7 strongly based on the papers of Baines, M. J. and Christou, K., [11]
and [15], respectively.
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Chapter 6

A Moving-Mesh Finite-Difference
Method for Segregated two-phase
Competition-Diffusion

This chapter considers the application of the moving mesh finite difference method
based on mass conservation described in Chapter 4, Section 4.2.5, on a system of
two competitive species. Due to the high competition between the species, the
two populations are segregated (i.e., cannot coexist in space) and separated in
space by a moving interface.

This chapter, excluding the Summary Section 6.6, is strongly based on the pa-
per: Baines, M.J.; Christou, K. A Moving-Mesh Finite-Difference Method for
Segregated Two-Phase Competition-Diffusion. Mathematics 2021, 9, 386. The
published paper can be found at https://doi.org/10.3390/math9040386.

6.1 Chapter Overview
A moving-mesh finite-difference solution of a Lotka-Volterra competition-diffusion
model of theoretical ecology is described in which the competition is sufficiently
strong to spatially segregate the two populations, leading to a two-phase problem
with a coupling condition at the moving interface. A moving mesh approach pre-
serves the identities of the two species in space and time, so that the parameters
always refer to the correct population. The model is implemented numerically
with a variety of parameter combinations, illustrating how the populations may
evolve in time.
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6.2 Introduction
Ecological competition is a widely studied concept in both theoretical and ex-
perimental ecology. In particular, interspecific competition has long been one
of ecology’s most prevailing pursuits as it is one of the factors that affect the
evolution of species and can alter populations and community structure.

Many researchers have made efforts to develop models to investigate species
competition from the viewpoint of mathematical ecology. For a theoretical un-
derstanding of spatial patterns arising in population dynamics for competitive
species, several free boundary problems have been proposed [66, 65, 185, 170, 58]
which provide useful theoretical results. Various numerical methods have been ap-
plied to solve such free boundary problems, for instance, in [110] the authors use a
front-tracking approach and a front-fixing approach to a two-species competition-
diffusion model with two free boundaries, whereas in [177] a moving mesh finite
element method is used to solve a system of two competitive segregated species
that cannot coexist in space.

Due to the complexity of the equations, a numerical approximation is useful both
for extracting quantitative solutions and for achieving a qualitative understanding
of the behaviour of the solution. However, special attention must be paid to the
moving interface, whose location usually requires a higher resolution than the
rest of the domain while the solution may exhibit singular behaviour there.

To avoid this difficulty adaptive methods have been used which modify the reso-
lution of the domain as the solution evolves in response to changes in the depen-
dent variable. Hence, greater precision can be achieved locally without having
to increase the resolution everywhere in the domain, which would lead to a very
computationally expensive scheme.

As we mentioned earlier in Chapter 4, in this thesis we are considering a particular
velocity-based method which lies in the r-refinement category of mesh adaptive
methods. In this method, the mesh is generated by one Eulerian conservation
principle while the solution is determined algebraically from a Lagrangian form
of conservation [14, 9, 103]. We first briefly describe the moving mesh method
based on conservation.

We recall from Section 4.2.5 of Chapter 4 that the conservation method uses an
integral to preserve a desired conserved quantity within each patch of elements
from which the velocities are constructed. For a mass-conserving problem, in
which the global mass is constant this quantity is the conserved local mass. How-
ever, for a non-mass-conserving problem, the theory uses the concept of relative
mass. By the Leibniz integral rule, we can then construct an equation from which
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the velocity of each node is derived. For a unique solution of that equation, the
population density must be known at a node or a velocity must be applied to a
node which may be thought of as an ‘anchor’ point.

The approach used in this chapter is similar to the finite difference method used
in [103] which was ensued from the finite element versions of the velocity-based
moving mesh approach of Baines, Hubbard and Jimack in [9] and [14] and by
Baines, Hubbard, Jimack and Mahmood in [10].

In this chapter, we apply the moving mesh finite difference method based on
conservation to a PDE system of the Lotka-Volterra competition model, first
proposed by [75], which describes a two-phase segregated reaction-diffusion sys-
tem with a high competition limit where the species are completely spatially
segregated and only interact through an interface condition. It is shown in [75]
that where the competition is strong enough to spatially segregate the two pop-
ulations the Lotka-Volterra system can be reduced to a form similar to a Stefan
problem in physics [67]. The two major differences are firstly, that there are addi-
tional logistic growth terms in the Lotka-Volterra model and secondly, there is a
parameter in the Lotka-Volterra model of the interface condition (the equivalent
of the latent heat coefficient of the Stefan problem) which is set equal to zero.
Unlike the Stefan problem, one species does not transform into another which
means that the competition system has an interface condition that specifies the
interface velocity only implicitly.

In [47] the authors considered the segregation problem due to high competition
with inhomogeneous Dirichlet boundary conditions while similar studies in the
case of Neumann boundary conditions are presented in [49] and [74].

The system of equations presented in this chapter is suitable to describe concepts
in ecology when two species with similar ecological niches cannot co-exist, known
as the competitive exclusion principle [70]. One will always overcome the other,
so the more competitive species will stay and the subordinate one will either
adapt or be excluded by either emigration or extinction.

The layout of the chapter is as follows. Section 6.3 gives details of the Lotka-
Volterra competition model with a highly competitive rate and describes the
relative conservation principle approach and its finite difference implementation,
together with the algorithm of the moving mesh finite difference method. In Sec-
tion 6.4 illustrations are given for a variety of parameter combinations, observing
the various behaviours that dominate as the species evolve through time. Finally,
Section 6.5 gives a brief discussion of the results and potential research directions.
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6.3 Materials and Methods

6.3.1 The Lotka-Volterra system

The Lotka-Volterra system is the two-component reaction-diffusion system

∂u1

∂t
= δ1

∂2u1

∂x2
+ f(u1, u2)u1 x ∈ R1(t), t > 0 (6.1)

∂u2

∂t
= δ2

∂2u2

∂x2
+ g(u1, u2)u2 x ∈ R2(t), t > 0 (6.2)

where u1(x, t) and u2(x, t) are the population densities of two competing species
in abutting regions R1(t) and R2(t), the parameters δ1, δ2 are constant diffusion
coefficients, and

f(u1, u2) = r1

(
1− u1 + k1u2

K1

)
g(u1, u2) = r2

(
1− u2 + k2u1

K2

)
are reaction terms in which k1, k2 are species-specific competition rates, K1, K2

are the carrying capacities of the species, and r1, r2 are reproductive rate param-
eters.
In [75] it is demonstrated that for two species completely segregated the reaction
terms can be reduced to

f(u1, u2) = r1(1− u1/K1)

and
g(u1, u2) = r2(1− u2/K2)

so that equations (6.1) and (6.2) become

∂u1

∂t
= δ1

∂2u1

∂x2
+

{
r1

(
1− u1

K1

)}
u1 x ∈ R1(t), t > 0 (6.3)

∂u2

∂t
= δ2

∂2u2

∂x2
+

{
r2

(
1− u2

K2

)}
u2 x ∈ R2(t), t > 0. (6.4)

The resulting system represents the limit in which the carrying capacities K1, K2

values are very large, i.e., the competition rate is high enough that the two species
cannot coexist in space and interact only through the interface boundary.

Initial conditions on u1 and u2 are selected such that one species is in growth and
the other in decline. These are shown in Figure 6.1.

Zero Neumann boundary conditions ∂u1/∂x = 0 and ∂u2/∂x = 0 are applied at
fixed external boundaries away from the interface.
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6.3.2 The interface conditions

At the interface between the two species, there is a condition that gives the rela-
tionship between their fluxes. In essence, the species both flow into the interface
and annihilate each other in a ratio determined by the competition coefficient µ.
This condition is given by

µδ1
∂u1

∂x
= −δ2

∂u2

∂x
, (6.5)

as shown in [75], where µ = k2/k1 is the interspecies competition rate. Because
the annihilation is complete we also have zero Dirichlet conditions u1 = u2 = 0
at the interface.
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Figure 6.1: Initial conditions for the competition system, with population density
u1 of species 1 (on the left) and u2 of species 2 (on the right). The interface node
has zero population and must always satisfy the interface condition.

6.3.3 The MMFDM conservation method

A relative conservation principle

Define the total population of species p as

θp(t) =

∫
Rp(t)

up(x, t) dx,

(p = 1, 2). Then by Leibniz integral rule,

θ̇p =
dθp
dt

=
d

dt

∫
Rp(t)

up(x, t) dx =

∫
Rp(t)

∂up

∂t
dx+ [upwp]Rp(t)

.
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where wp is the velocity of points of the domain.
The final term vanishes by the boundary and interface conditions, so

θ̇p =

∫
Rp(t)

∂up

∂t
dx, (p = 1, 2).

From (6.3) and (6.4),

θ̇p =

∫
Rp(t)

(
δp
∂2up

∂x2
+

{
rp

(
1− up

Kp

)}
up

)
dx, (p = 1, 2) (6.6)

which can be integrated in time to give θp.

We now suppose that population fractions c(Ωp)

c(Ωp) =
1

θp(t)

∫
Ωp(t)

up(x, t) dx, (p = 1, 2) (6.7)

in each moving subdomain Ωp(t) are independent of time, so that θp(t) and up(x, t)
satisfy the relative conservation principle

c(Ωp) =

∫
Ωp(t)

1

θp(t)
up(x, t) dx, (p = 1, 2). (6.8)

Note that up

θp
are conserved quantities.

Since the population fractions c(Ωp) are constant in time, they are determined
by the conditions at the initial time t0, i.e.,

c(Ωp) =
1

θp(t0)

∫
Rp(t0)

up(x, t
0) dx.

Writing (6.8) as ∫
Ωp(t)

up(x, t) dx = c(Ωp)θp(t), (p = 1, 2) (6.9)

and differentiating the left-hand side of (6.9) with respect to time using Leibnitz
integral rule,

d

dt

[∫
Ωp(t)

up(x, t)dx

]
=

∫
Ωp(t)

(
∂up

∂t
+

∂

∂x
(upwp)

)
dx, (p = 1, 2),
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where wp is the velocity of points of the domain. Therefore, by (6.9), given the
population fractions c(Ωp) of the total mass θ̇p, the velocity wp and up satisfy the
equations

c(Ωp) θ̇p −
∫
Ωp(t)

∂

∂x
(upvp)dx =

∫
Ωp(t)

∂up

∂t
dx, (p = 1, 2),

where the θ̇p are given by (6.3) or (6.4), leading to

c(Ωp)θ̇p − [upwp]Ωp(t)
= δp

[
∂up

∂x

]
Ωp(t)

+ rp

∫
Ωp(t)

up(x, t)

(
1− up(x, t)

Kp

)
dx.

(6.10)

We let the subdomains Ω1(t) in the region R1(t) consist of the interval (a, x(t))
where a is a fixed boundary and let x(t) be any point in the region R1(t). Similarly
the subdomains Ω2(t) in the region R2(t) consist of the interval (x(t), b) where b
is a fixed boundary and x(t) is any point in the region R2(t).

The boundary conditions at the external boundaries a = 0 and b = 1 are
∂u1/∂x = ∂u2/∂x = 0, and also w1 = w2 = 0 because the boundaries are
fixed. Together with the condition that u1 = u2 = 0 at the interface boundary,
equations (6.10) for the velocities w1 and w2 and the rates of change in the total
mass θ̇1 and θ̇2 satisfy

c1(x)θ̇1 − (u1w1)|x(t) = δ1
∂u1

∂x

∣∣∣∣
x(t)

+ r1

∫ x(t)

a

u1(x, t)

(
1− u1(x, t)

K1

)
dx (6.11)

and

c2(x)θ̇2 + (u2w2)|x(t) = −δ2
∂u2

∂x

∣∣∣∣
x(t)

+ r2

∫ b

x(t)

u2(x, t)

(
1− u2(x, t)

K2

)
dx, (6.12)

respectively, where

θ1 =

∫ xm(t)

0

u(x, t) dx, θ2 =

∫ 1

xm(t)

u(x, t) dx

and

c1(x) =
1

θ1(t)

∫ x(t)

0

u(x, t) dx, c2(x) =
1

θ2(t)

∫ 1

x(t)

u(x, t) dx.

From (6.6),

θ̇1 = δ1
∂u1

∂x

∣∣∣∣
xm(t)

+ r1

∫ xm(t)

a

u1(x, t)

(
1− u1(x, t)

K1

)
dx (6.13)

and

θ̇2 = −δ2
∂u2

∂x

∣∣∣∣
xm(t)

+ r2

∫ b

xm(t)

u2(x, t)

(
1− u2(x, t)

K2

)
dx. (6.14)

110



The interface condition

Since the population density u = 0 at the interface and the population densities
on either side of the interface are positive, the density function is V-shaped at
the interface.

From [75] the interface condition is given by (6.5). Whilst the interface velocity
is not given explicitly by (6.5) this equation does determine the location of the
interface implicitly. Thus, if we know ∂u/∂x adjacent to the interface in each
region we may use the condition that u = 0 at the interface to infer an interface
position such that the values of δp∂up/∂x either side of the interface are in the
ratio −µ.

We now describe a finite difference numerical method for the solution of the
problem.

Numerical solution

Let the domain (a, b) be (0, 1). At time level t = tn define time-dependent mesh
points

0 = x0 < xn
1 < . . . < xn

m−1 < xn
m < xn

m+1 < . . . < xn
N < xn

N+1 = 1,

where xn
m is the node at the moving interface, and let un

i , (0 ≤ i ≤ N + 1),
approximate u(x, t) by un

i at these points.

The total mass approximations θn1 ≈ θ1(t) and θn2 ≈ θ2(t) of (6.13) and (6.14) are
estimated by the composite trapezium rule

θn1 =
m∑
i=1

1

2
(ui−1 + ui)(xi − xi−1), θn2 =

N∑
i=m

1

2
(ui + ui+1)(xi+1 − xi), (6.15)

and the constant-in-time relative masses c1,i and c2,i in the interval (xn
i−1, x

n
i ) by

c1,i =
1

θ1

1

2
(u0

i + u0
i+1)(x

0
i+1 − x0

i ), (0 ≤ i < m− 1), (6.16)

c2,i =
1

θ2

1

2
(u0

i + u0
i−1)(x

0
i − x0

i−1), (m+ 1 < i ≤ N + 1), (6.17)

at the initial time t = t0.

For the initial conditions we take the x0
i to be equally spaced and the u0

i pointwise
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from an initial function

u(x, 0) = 30, (0 ≤ x ≤ 0.34)

u(x, 0) = (x− 0.2)(0.5− x)× 170× 7.85, (0.35 ≤ x ≤ 0.5)

u(x, 0) = 0, (x = 0.51)

u(x, 0) = (x− 0.65)(0.5− x)× 170× 94, (0.52 ≤ x ≤ 0.58)

u(x, 0) = 90, (0.59 ≤ x ≤ 1)

chosen to resemble the one in [177] (see Figure 6.1).

Rates of change of the total populations

The rates of change of the total populations θ̇1, θ̇2 of (6.6) are approximated by
composite trapezium rules, in region 1 from (6.13),

θ̇1 = δ1

(
un
m − un

m−1

xn
m − xn

m−1

)

+r1

m∑
i=1

1

2

{
un
i−1

(
1−

un
i−1

K1

)
+ un

i

(
1− un

i

K1

)}
(xi − xi−1) (6.18)

and in region 2, from (6.14),

θ̇2 = −δ2

(
un
m+1 − un

m

xn
m+1 − xn

m

)

+r2

N∑
i=m

1

2

{
un
i

(
1− un

i

K2

)
+ un

i+1

(
1−

un
i+1

K2

)}
(xi+1 − xi). (6.19)

Approximating the velocities

From (6.11), using the composite trapezium rule, the velocity wn
i in region 1

satisfies,

c1,iθ̇
n
1 + un

i w
n
i = δ1

∂u

∂x

∣∣∣∣i
m

+r1

i∑
j=2

1

2

{
un
j−1

(
1−

un
j−1

K1

)
+ un

j

(
1−

un
j

K1

)}
(xj − xj−1), (1 < i < m− 1),
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where we have taken the subdomain Ωn
1 to be the interval (xn, xn

m). Similarly,
from (6.12),the velocity wn

2 in region 2 satisfies

c2,iθ̇
n
2 + un

i w
n
i = −δ2

∂u

∂x

∣∣∣∣i
m

+r2

N∑
j=i

1

2

{
un
j

(
1−

un
j

K2

)
+ un

j+1

(
1−

un
j+1

K2

)}
(xj+1 − xj), (m+ 1 < i < N),

where we have taken the subdomain Ωn
2 to be the interval (xn

m, x
n).

Time-stepping

For the time integration we adopt an explicit Euler time-stepping approach.
Given the ui, we update the total masses θp from the equation θ̇p = dθp/dt,
(p = 1, 2) using (6.18) and (6.19) by

θn+1
p = θnp +∆t θ̇np , (6.20)

(p = 1, 2), where ∆t is the time step, and the mesh points xn
i are updated from

the equation dxi/dt = wi by

xn+1
i = xn

i +∆t wn
i , (i ̸= m). (6.21)

The updates are first-order accurate in time and subject to limitations on the
time step to preserve node ordering.

Note that in case of a zero velocity, there is the following well-known sufficient
condition on a time step ∆t in the explicit scheme to prevent the un+1

i (and hence
the local mass in an interval) from going unstable,

δp∆t

(∆xmin)2
≤ 1

2
, (p = 1, 2). (6.22)

Here we take (6.22) as a guide for a safe time step in the moving mesh case.

The population densities

In order to determine the approximate population densities ui at the new time
step t = tn+1 from the θn+1

p and xn+1
i we approximate the relative conservation

principle (6.8) as

1

θp
(xn+1

i+1 − xn+1
i−1 )u

n+1
i = cp,i, (p = 1, 2), (6.23)
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where from (6.16) and (6.17) the constants

cp,i =
1

θ0p
(x0

i+1 − x0
i−1)u

0
i , (p = 1, 2), (6.24)

are dependent only on initial values.

Thus, once the xn+1
i have been found, in region 1, the approximate population

density un+1
i is given by

un+1
i =

c1,iθ
n+1
1

(xn+1
i+1 − xn+1

i )
, (0 ≤ i ≤ m− 1), (6.25)

and in that region 2 by

un+1
i =

c2,iθ
n+1
2

(xn+1
i − xn+1

i−1 )
, (m+ 1 ≤ i ≤ N + 1) (6.26)

while un+1
m = 0 from the interface condition.

Note that the values of un+1
m±1 determined by (6.23) depend on xn+1

m , which is
not yet known at tn+1. This value can however be found using the one-sided
approximations

un+1
m−1 =

c1θ1
1
2
(xn+1

m−1 − xn+1
m−2)

, un+1
m+1 =

c2θ2
1
2
(xn+1

m+2 − xn+1
m+1)

where from (6.16) and (6.17))

c1 =
1

2
u0
m−1(x

0
m−1 − x0

m−2), c2 =
1

2
u0
m+1(x

0
m+2 − x0

m+1).

Approximating the interface

The interface condition (6.5) is approximated by

µδ1
um − um−1

xm − xm−1

= −δ2
um+1 − um

xm+1 − xm

, (6.27)

where the subscript m denotes the interface node and the xm±1, um±1 are adjacent
node positions and solution values. Since um = 0, from (6.27) an approximation
to the position of the interface node xn+1

m in terms of adjacent nodal values at
m± 1 is

xn+1
m =

(
µδ1u

n+1
m−1x

n+1
m+1 + δ2u

n+1
m+1x

n+1
m−1

µδ1u
n+1
m−1 + δ2u

n+1
m+1

)
. (6.28)

Thus, once the other xn+1
i , un+1

i have been updated, xn+1
m can be found from

(6.28).

114



6.3.4 Algorithm

In summary, the moving mesh finite difference solution of the competition-diffusion
problem given by equations (6.3) and (6.4) with the interface condition (6.5) on
the moving mesh in 1-D generated by (6.8) is given by the following algorithm.

From the initial mesh and the initial condition compute the initial values θp(0),
(p = 1, 2) of the total populations of the species from (6.15) and the values of the
relative masses cp,i and cp,i from (6.16), (6.17) and (6.24).

Then for each time step:

1. Find the rates of change θ̇1, θ̇2 of the total masses from (6.18) and (6.19),

2. Calculate the nodal velocities vi from (6.11) and (6.12),

3. Update θ1 and θ2 from θ̇1 and θ̇2 using the explicit Euler scheme (6.20),

4. Generate the nodes xi at the next time-step from the wi using the explicit
Euler scheme (6.21),

5. Update the population densities ui at the next time level in each region
from (6.25) and (6.26),

6. Update the new position of the interface node xm at the next time level
from (6.28).

6.4 Results
We find that the model is stable and robust for a variety of parameter choices
even when using the explicit Euler integration scheme when using a sufficiently
small time step. We observe minimal oscillations affecting the smoothness of the
results.

6.4.1 A parameter choice

In the body of work concerning Lotka-Volterra equations, there is a vast range of
parameter values in use because there are so many varied but suitable examples
of the type of competition that are described here. We select a conservatively
representative set of parameters, chosen to demonstrate some of the behaviour
that this model is able to describe.

For the first example, the parameter values are chosen followed by the ones used
in [177] for consistency, namely δ1 = δ2 = 0.01, K1 = K2 = 100, r1 = r2 = 1
and µ = 3 for the dimensional system in (6.3)-(6.5). The choice allowed the
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comparison of the results using the moving mesh finite element of [177] and the
moving mesh finite difference version used in this chapter. Even if species 2
makes territorial gains at early stages with the moving interface shifting towards
the left, the rapid growth in the population of species 1 becomes its weapon
to transform it from the inferior species to the superior one (Figure 6.2). The
moving interface changes direction, moving towards the right at an approximately
constant velocity where species 1 continues to increase in density with a rate that
decreases as time progresses (Figure 6.3). As we approach the annihilation of
species 2, the interface velocity increases again. This is due to the low mass of
species 2 affecting its ability to grow (Figure 6.4). The movement of the interface
is shown in Figure 6.5.
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Figure 6.2: Result of competition model up to t = 1.5. Here we use δ1 = δ2 =
0.01, k1 = k2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 10−5 for 1.5× 105 iterations and plot the results every 0.1.We see the internal
dynamics of the species driving the population densities and interface fluxes, and
the position of the interface responding to those fluxes. The initial conditions are
shown in red, with species 1 in blue and species 2 in green.
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Figure 6.3: Result of competition model up to t = 4.5. Here we use δ1 = δ2 =
0.01, K1 = K2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time
step of 10−5 for 4.5× 105 iterations and plot the results every 0.1. The interface
continues to evolve and the masses of the species are now limited by the respective
carrying capacities. The initial conditions are shown in red, with species 1 in blue
and species 2 in green.
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Figure 6.4: Result of competition model up to t = 8. Here we use δ1 = δ2 = 0.01,
K1 = K2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of
10−5 for 8× 105 iterations and plot the results every 0.1. We observe that whilst
species 2 initially grew in mass, it will now be wiped out by competition with
species 1. The initial conditions are shown in red, with species 1 in blue and
species 2 in green.
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Figure 6.5: Movement of the interface position xm for the competition model
with parameters δ1 = δ2 = 0.01, K1 = K2 = 100, r1 = r2 = 1 and µ = 3. We run
the model with a time step of 10−5 for 8× 105 iterations.

6.4.2 Other parameter choices

Carrying capacities

We now investigate other parameter choices. We restrict the growth of species 1
by lowering its carrying capacity and observe that in this scenario neither species
is dominant, even though all the competition and diffusion characteristics are
unchanged. Here we use δ1 = δ2 = 0.01, K1 = 50, K2 = 150, r1 = r2 = 1 and
µ = 3. With these differently chosen carrying capacities, we find that the interface
position is approximately steady and the two species are in balance. This scenario
is shown in Figure 6.6. Density dependence can affect the ability of a species to
compete. In the case of decreasing the carrying capacity of species 1, we observe
that species can both exist in space, still competing for common resources with
none shifting towards other regions in space or in some cases becoming extinct.
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Figure 6.6: Result of competition model up to t = 9, considering the effect of
altered carrying capacities. Here we use δ1 = δ2 = 0.01, K1 = 50, K2 = 150,
r1 = r2 = 1 and µ = 3. We run the model with a time step of 10−5 for 9 × 105

iterations and plot the results every 0.1. The figure shows the rapid territorial
gains. The initial conditions are shown in red, with species 1 in blue and species
2 in green.

Diffusion characteristics

Alternatively, we may adjust the diffusion characteristics of the system. By al-
lowing species 2 to diffuse at a higher rate, we observe that species 2 is able
to make territorial gains due to this property alone (Figure 6.7). Here we use
δ1 = 0.01, δ2 = 0.05, K1 = K2 = 100, r1 = r2 = 1 and µ = 3. Due to the growth
characteristics, we can see interesting temporal effects. Here the interface velocity
has actually reversed directions as the system changes from diffusion dominated
to growth dominated. We observe that species 2 is able to make territory gains
initially due to its high diffusion rate, even though the competition rate is un-
altered. However, as time goes on, the growth and competition characteristics
become increasingly important. We see species 1 becoming more dominant over
time so that the interface velocity actually reverses direction.

Figure 6.8 shows the evolution of the system up to t = 11 and Figure 6.9 shows
the movement of the interface with the direction reversal.
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Figure 6.7: Result of competition model up to t = 1.5, considering the effect
of an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
K1 = K2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step of
10−5 for 1.5× 105 iterations and plot the results every 0.1. The figure shows the
rapid territorial gains of species 2 over species 1 due to its high diffusion rate.
The initial conditions are shown in red, with species 1 in blue and species 2 in
green.
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Figure 6.8: Result of competition model up to t = 11, considering the effect
of an increased diffusion rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05,
K1 = K2 = 100, r1 = r2 = 1 and µ = 3. We run the model with a time step
of 10−5 for 1.1 × 105 iterations and plot the results every 0.1. We see that the
initial diffusion-driven gains by species 2 are reversed and that the overall growth
characteristics are dominating so that species 1 is gaining territory. The initial
conditions are shown in red, with species 1 in blue and species 2 in green.
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Figure 6.9: Position of the interface, xm, showing interface movement for the
competition model at up to t = 11, considering the effect of an increased diffusion
rate for species 2. Here we use δ1 = 0.01, δ2 = 0.05, K1 = K2 = 100, r1 = r2 = 1
and µ = 3. We run the model with a time step of 10−5 for 1.1 × 105 iterations.
Here the interface velocity has actually reversed direction.

6.5 Discussion
In this chapter, we constructed a moving mesh finite difference method based on
conservation for the Lotka-Volterra competition system with a high competition
limit, such that the species are completely spatially segregated at an interface.
The system of equations produced interesting behaviour. We were able to im-
plement the model with a wide variety of parameter combinations and observed
various effects dominating in turn as the populations evolve through time.

The illustrations presented above give confidence that the model and the moving
mesh finite difference approach are likely to be able to satisfy the requirements
of modelling a wide variety of competition systems and is numerically stable to
a large choice of set-up parameters and are able to produce complex behaviours
without problems.

For a set of parameters that favour species 1, we see an increasing interface ve-
locity in the initial stages followed by a change in direction and a long steady
phase where the interface velocity is approximately constant. Although the pop-
ulation of species 2 initially makes territorial gains it is eventually wiped out by
the competition with species 1. As the annihilation of species 2 is approached,
the interface velocity increases again. This is due to the low population of species
2 affecting its ability to compete with species 1.
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If the growth of species 1 is restricted by lowering its carrying capacity, interest-
ingly, we observe that neither species is dominant, even though all the competition
and diffusion characteristics are unchanged. Therefore, density dependence can
affect the competitive ability of a species.

In the case of increasing the diffusion rate for species 2, this species is able to make
initial territorial gains, even though the competition rate is unaltered. However,
as time goes on, growth and competition characteristics become increasingly im-
portant and species 1 becomes more dominant, so the interface velocity reverses
direction.

A natural extension is to two dimensions along the lines described in [67], a first
attempt appearing in reference [178] which foundered only on stability issues.
In further work it would be interesting to compare the behaviour of the model
against an empirical data set. The model lends itself to alterations to the logistic
terms and changes to parameters without the need for any further development.
The aim should be to understand the requirements from both a mathematical
and quantitative perspective.

6.6 Summary
In this chapter, we illustrated a detailed application of the moving mesh finite dif-
ference method on a system of highly competitive species. The simulations were
produced by choosing a range of different set-up parameters chosen to demon-
strate some of the interesting behaviour that this model can explain. We explored
the nature of the solution for various parameter values in relation to each other
by varying one parameter value at a time. We found that the model is stable and
robust. Even using the simplest Euler integration scheme, we observed no oscil-
lations affecting the smoothness of results though a very small time step value
was required.

The application of the moving mesh method based on conservation on systems
such as the one presented in this chapter is quite straightforward as the equations
are not coupled and each species occupies a distinct part of the domain. The
application of the method gets more complicated when the system consists of
coupled equations where species have overlapping domains. In such cases, the
standard application of the method would involve the interpolation of the two
meshes (of each population/species) at each time step in order to approximate
the coupled terms, resulting in a very messy scheme.

In the following chapter, we present a new approach to approximating coupled
systems using the moving mesh method which avoids the need of interpolation
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as the entire system is solved on a single mesh.
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Chapter 7

A Numerical Method for
Multi-species Populations in a
Moving Domain using Combined
Masses

Motivated by the study of the highly competitive spatially segregated species of
Chapter 6 we consider here a system of two coupled equations where species are
still competing for common resources but coexist in space. We consider a new
feature of the moving mesh method based on conservation for approximating
coupled equations. This new approach considers the combined masses of the
populations and the two species equations are solved on a single mesh. The
combined mass process will form the substance of our study in the following
chapters of the thesis where we aim to demonstrate its application on various
coupled species systems including multi-species systems (consisting of more than
two species).

This chapter, excluding Section 7.5 for the extension to the radially symmetric
case and the Summary Section 7.7, is strongly based on the paper: Baines, M.J.;
Christou, K. A Numerical Method for Multispecies Populations in a Moving
Domain Using Combined Masses. Mathematics 2022, 10, 1124. The published
paper can be found at https://doi.org/10.3390/math10071124.
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7.1 Chapter Overview
This chapter concerns the numerical evolution of two interacting species satisfying
coupled reaction-diffusion equations in one dimension which inhabit the same
part of a moving domain. The domain has both moving external boundaries
and moving interior interfaces where species may arise, overlap, or disappear.
Numerically, a moving finite difference method is used in which node movement
is generated by local mass preservation which includes a general combined mass
strategy for species occupying overlapping domains. The method is illustrated
by a test case on a one-dimensional domain in which a range of parameters is
explored while we also extend our study to the two-dimensional radial case.

7.2 Introduction
Many simulation problems over a vast range of different sectors including physics,
finance, biology and many more, can be described by partial differential equation
models that exhibit a priori unknown sets such as interfaces, moving boundaries,
shocks etc.

Moving or free boundary problems have emerged in increasing numbers over
recent years, especially in ecology, for modelling species interactions and gener-
ally for gaining insights into population dynamics. Many theoretical results for
general models in ecology including competition diffusion models are found in
[94, 119, 171, 81, 66, 172] and references cited therein. While the theoretical
analysis of free boundary problems in ecology is well represented in the literature
there are fewer studies on the implementation of numerical methods for solving
such problems, partly due to the presence of moving boundaries.

The approximate solution of free and moving boundary problems is challenging
since a higher resolution is usually required in the vicinity of boundaries where a
change in the slope of the solution is located, often occupying a central position
within the domain.

In reference [110], the authors have used both front tracking and front fixing ap-
proaches to numerically solve competition-diffusion models with two free bound-
aries. The approach involves the use of a fixed grid to locate the position of the
moving boundaries, which are then tracked explicitly. However, for solutions pos-
sessing sharp spatial transitions that move, such as free or moving boundaries, a
fixed mesh method is generally considered inefficient since the very small spatial
step required for the resolution of the boundary leads to an extremely small time
step due to the stiffness of the system.
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Over the years adaptive grid methods have been used successfully to solve free and
moving boundary problems. Such methods automatically adjust the size of the
space step to better approximate critical regions of high spatial activity without
the use of a large number of nodes. Here we focus on a particular adaptive mesh
method which describes the dynamic movement of existing nodes continuously
in time to track the features of interest, known as moving mesh methods. For
further details on adaptive mesh methods see also Chapter 4.

In particular, the moving mesh method used in this chapter is the conservation
method in which an integral is used to preserve a desired conserved quantity, e.g.,
mass, within each patch of elements, from which node velocities are constructed.
A moving mesh equation is extracted and solved in association with the PDE(s)
[14, 9, 103].

More recently, the moving mesh finite difference method based on conservation of
[103] was used in [11] (Chapter 6) for solving the competition diffusion system of
[75] in which species are spatially segregated due to high competition and interact
only through a moving interface. The results in [11] (Chapter 6) gave confidence
that the method is numerically stable and robust for a wide choice of parameter
values.

Even though moving mesh methods have proved to be efficient and reliable, they
can be challenging when the system being solved includes coupled PDEs and the
solution variables occupy distinct but overlapping domains.

Motivated by the work in [11] (Chapter 6), we apply the moving mesh finite
difference method based on conservation for the general case of the competition-
diffusion system of [75] where coupled species can coexist in space but still com-
pete for common resources.

7.2.1 The competition-diffusion system of cohabiting species
with moving boundaries

In order to demonstrate the features of the numerical method we have chosen the
one-dimensional classical Lotka-Volterra system

∂u

∂t
= δ1

∂2u

∂x2
+ f(u, v)u x ∈ R1(t), t > 0 (7.1)

∂v

∂t
= δ2

∂2v

∂x2
+ g(u, v)v x ∈ R2(t) t > 0, (7.2)

where f(u, v) = r1

(
1− u+k1v

K1

)
and g(u, v) = r2

(
1− v+k2u

K2

)
. Here u and v are

the densities of two competing species that move by diffusion in space, δp is the
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diffusion rate, rp is the intrinsic growth rate, Kp is the carrying capacity and kp
is the competition rate (p = 1, 2). All the parameters are positive constants. The
domains R1(t) and R2(t) are occupied by species u and v respectively, and partly
overlap (see Figure 7.1).

Boundary conditions
A zero Neumann boundary condition is imposed, i.e.,

∂u

∂x
= 0 t > 0, x = 0

on u at the fixed left-hand boundary (x = 0) of the whole domain R1(t) ∪ R2(t),
(see Figure 7.1), which implies that there is no migration across the left-hand
boundary. In other words, the zero Neumann condition implies a zero net inward
flux, say q, at the boundary x = 0.

Interface conditions
The dynamics of the two inner-moving boundaries H(t) and Z(t), from a conti-
nuity of net flux, are

dH

dt
= − δ1

k1

(
∂u

∂x

)∣∣∣∣
x=H

(7.3)

and
dZ

dt
= − δ2

k2

(
∂v

∂x

)∣∣∣∣
x=Z

. (7.4)

We impose u(H(t), t) = 0 and v(Z(t), t) = 0.

Free boundary condition
Lastly, the right-hand side boundary S(t) of species 2 is taken to be a free bound-
ary which is assigned the condition

dS

dt
= −δ2

µ

(
∂v

∂x

)∣∣∣∣
x=S

, (7.5)

where µ is inversely proportional to the preferred population density at the
spreading front. For the ecological background of free and moving boundary
conditions refer to [33].

The difference between the model in [75] and this one is that here the species are
only partly segregated initially with a region in the middle of the domain where
species coexist, as shown in Figure 7.1.

By contrast, in [11] the application of the moving mesh method to the two-species
problem is straightforward as there is no coupling between the equations. The
non-linear reaction terms in each equation depend only on the local species and
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not on that of the competitor. Moreover, each species occupies a separate part
of the domain.

The aim of this chapter is to solve the above system of competitive species using
a moving mesh finite difference method based on the conservation of mass and a
known net inward flux q(t) at x = 0.

The layout of the chapter is as follows. In Section 7.3.1 we recall the basics of the
conservation method and state algorithms for solving mass and non-mass conserv-
ing problems using the moving mesh finite difference based on mass balance. In
Section 7.3.2 we introduce a combined mass approach in which the competition-
diffusion system (7.1) and (7.2) is solved on a single mesh, thus avoiding inter-
polation to approximate f and g at each time-step. The essential difference in
the approach is the use of the combined mass in overlapped domains. Following
the algorithm of Section 7.3.1 and the use of a combined mass approach of 7.3.2
we provide a detailed solution for approximating the competition system (7.1)
and (7.2). Section 7.4 provides illustrations for a variety of parameter combina-
tions and in 7.5 we show that the new feature of the moving mesh conservation
method can be easily extended to approximate the two-dimensional radial case
of the competitive system. Finally, Section 7.6 gives a brief discussion of the
method, the results, and potential research directions.

Figure 7.1: Initial conditions for the competition system, with population density
u of species 1 in green and v of species 2 in red. The outer boundaries are x = 0
(fixed) and x = S(t) (free) while the interfaces are at x = Z(t) and x = H(t).
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7.3 Materials and Methods

7.3.1 A solution based on the conservation method

In what follows m refers to an interval and j or i refers to a node.
We introduce a time-dependent space coordinate x̃(x, t), abbreviated to x̃(t) at
a specific x, which coincides instantaneously with the fixed coordinate x in the
domain (a(t), b(t)). Let ∆x̃ denote the interval between adjacent moving nodes.
We follow an interval ∆x̃m possessing a density um(x̃, t). The mass in the interval
is approximated by

θm(t) = um(t)∆x̃m, (7.6)

and the total mass in the moving domain (a(t), b(t)) is

θ(t) =
∑
m

um(t)∆x̃m, (7.7)

say.

By mass balance the rate of change of the mass θm(t) in the interval m is given
by the inward flux q(x̃, t) through the interval boundaries together with the flux
due to movement, i.e.,

[q(x̃, t)]m + [u(x̃, t)w(x̃, t)]m,

where the notation [·]m denotes the jump in the argument across the interval m.
Since w(x̃, t) = ∆x̃/∆t to first order in ∆t it follows from mass balance that

d

dt
(um∆x̃m) = −[q(x̃, t) + u(x̃, t)w(x̃, t)]m, (7.8)

where [w(x̃, t)]m denotes a velocity associated with the interval m, i.e., the veloc-
ities at the boundaries of the interval m.
The flux q(x̃, t) is the mass increment within the interval m due to the in-
ward/outward fluxes and the source/sink terms, as provided by the problem.
The overall rate of change of mass in the moving domain (a(t), b(t)) is

d

dt

∑
m

um∆x̃m = −[q(x̃, t) + u(x̃, t)w(x̃, t)]
b(t)
a(t),

where q(x̃, t) =
∫ b(t)

a(t)
∂u
∂t
dx and [u(x̃, t)w(x̃, t)]

b(t)
a(t) is the flux jump across the bound-

aries of the moving domain.
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A method based on preservation of relative masses

The conservation of mass fractions (CMF) method for those problems that con-
serve the total mass of the solution, i.e., for which θ(t) remains constant for all
t ≥ t0, is based on the preservation of partial masses by supposing that x̃ moves
in such a way that the mass in any interval is independent of time, i.e.,

um(t)∆x̃m(t) = cm (7.9)

is constant in time.
Then both sides of (7.8) are zero and the nodal velocities may be constructed
from the zero right-hand side. New x̃ positions are determined by a time inte-
gration scheme using the evaluated nodal velocities and the new u(x̃, t + ∆t) is
obtained by equation (7.6) using the new node locations.

For more general problems that do not conserve mass such as the one in Section
7.2.1, the total mass θ(t) varies with time. Therefore, it is inconsistent to suppose
that the mass (7.6) in each interval is constant in time. However, the relative
density, defined as u(x̃, t)/θ(t), has a total relative mass∫ b(t)

a(t)

u(x̃, t)

θ(t)
dx

which equals unity. It is therefore consistent to suppose that the local relative
mass, ∫

m

u(x̃, t)

θ(t)
dx (7.10)

in a cell m is conserved in time. The conservation of the relative mass in each
subinterval can therefore be used to generate fluxes and velocities to move the
nodes. The approach requires the total mass to be given as part of the problem.

The relative CMF method can be described as follows. Define a relative density

ûm =
um

θ(t)
, (7.11)

where θ(t) is the current total mass. Then by (7.10) the relative mass in cell m
can be written ∫

m

ûm(x, t) dx = γm, (7.12)

say, constant in time. Summing γm over m gives 1. Also, by conservation of the
relative mass (cf. 7.9), the relative flux jump across cell m is

[q̂ + ûŵ]m = 0, (7.13)
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where q̂ is a modified flux. Summing (7.13) over all intervals m, leads to [q̂ +
ûŵ]ba = 0. If the argument vanishes at one end of the domain, then q̂+ ŵû is zero
at all nodes and

ŵ = − q̂

û

is the relative velocity (provided that û ̸= 0).
The CMF equations for a mass-conserving problem consist of the local conserva-
tion of mass equation (7.12) together with the flux balance equation (7.13). We
remark here that equations (7.12) and (7.13) are equivalent to the Lagrangian
and Eulerian conservation laws respectively which are coincident for small times.
We relate q̂ to the static ∂u/∂t which is known from the statement of the problem
in Section 7.2.1. Differentiating (7.12) and using the Leibniz integral rule for the
relative mass,

d

dt

∫
m

û(x, t) dx = 0 =

∫
m

∂û

∂t
dx+ [ûŵ]m.

By the relative mass balance equation (7.13),

0 = [q̂]m + [ûŵ]m (7.14)

yielding

[q̂]m =

∫
m

∂û

∂t
dx. (7.15)

Hence if u, θ (therefore û) are known, [q̂] can be determined from ∂u
∂t

. Since by
(7.11)

∂û

∂t
=

∂

∂t

(u
θ

)
=

1

θ

∂u

∂t
− θ̇

θ2
u,

where θ̇ = dθ/dt, then from (7.15)

[q̂]m =
1

θ

∫
m

∂u

∂t
dx− θ̇

θ2

∫
m

u(x, t) dx

and by (7.12)

[q̂]m =
1

θ

(∫
m

∂u

∂t
dx− θ̇γm

)
, (7.16)

where ∂u/∂t is known from the statement of the problem and the time-independent
γm are given by (7.12), leading to

[ûŵ]m = −1

θ

(∫
m

∂u

∂t
dx− γmθ̇

)
(7.17)
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by equation (7.14). If m denotes the interval between two successive nodes, e.g.
(xi, xi+1), the left-hand side of (7.17) can be written (ûŵ)i+1 − (ûŵ)i . For a
unique solution of ûŵ, the flux [ûŵ] must be imposed at one point which may be
thought of as an ‘anchor’ point. A common choice of an anchor point is at the
boundary of the region, such as xn

0 , where the value ûŵ is known. Summing from
a fixed point at node x0 to x̃i gives

(uw)i − (uw)0 = −
(∫

m

∂u

∂t
dx− Γiθ̇

)
(7.18)

since [ûŵ]mθ = [uw]m, where Γi =
∑i

j=0 γj .
The rate of change θ̇(t) of the total mass θ(t) can be evaluated using the original
PDE. By mass balance, the rate of change of the total mass equals the flux q(x̃, t)
(inward/outward fluxes and reaction terms) plus the flux due to motion, i.e.,

dθ

dt
=

∫ b(t)

a(t)

∂u

∂t
dx+ [uw]

b(t)
a(t), (7.19)

where [uw]
b(t)
a(t) in (7.19) is given by the boundary conditions of the problem.

Example
As an example related to the equations (7.1) and (7.2), consider u such that

∂u

∂t
= δ

∂2u

∂x2
+ s(x, t), (7.20)

where δ is the diffusion coefficient and s(x, t) denotes the source terms.
Substituting equation (7.20) into equations (7.18) and (7.19), we can calculate
ŵm and ∂θ

∂t
by integration of the diffusion term, together with the boundary

conditions.
The equation for dθ

dt
using (7.19) and (7.20) is

dθ

dt
=

∫ b(t)

a(t)

(
δ
∂2u

∂x2
+ s
)
dx+ [uw]

b(t)
a(t) =

∫ b(t)

a(t)

s dx+

[
δ
∂u

∂x
+ uw

]b(t)
a(t)

(7.21)

and the equation for the velocity wi of a node xi is given from (7.18) and (7.20)
as

wi =
1

ui

(
Γiθ̇ −

∫
m

(
δ
∂2u

∂x2
+ s
)
dx+ uw|0

)
=

1

ui

(
Γiθ̇ −

∫
m

s dx− δ

[
∂u

∂x

]
m

)
,

(7.22)
where the anchor point is taken to be the fixed node x0 (i.e., w0 = 0), m is the
interval (x0, xi) and Γi denotes the summation of all the γm from m = 0 to i.
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Note that θ̇ is known from (7.21).
The example ends here.
Once the velocity w has been found it can be integrated to move the nodes

dx̃

dt
= w,

while the new total mass is found by integrating
dθ

dt
= Q, (7.23)

where Q is the known rate of increase of mass.
Finally, having the new positions of x̃ and the new θ we can use equations (7.11)
and (7.12) to update u(x̃, t) from,∫

m

um(x̃, t) dx = γmθ(t) (7.24)

where m denotes an interval. A first-order-in-time finite-difference algorithm
based on this theory is as follows.

Finite difference method

Given a time-step ∆t > 0 and a fixed number N of spatial nodes, choose discrete
times tn = n∆t, (n = 0, 1, . . . ) and discretise the domain at each time using the
nodes x̃n

i = x̃(xi, t
n), i = 0, 1, . . . , N + 1, for which a(tn) = xn

0 < xn
1 < . . . <

xn
N+1 = b(tn). Let m denote the intervals between the nodes, i.e., m = 1, . . . , N+1

(see Figure 7.2). Also define the approximations at the nodes un
i ≈ u(x̃, tn),

wn
i ≈ w(x̃, tn), θn ≈ θ(tn) and θ̇n ≈ θ̇(tn). Having defined the notation, we

proceed to the initial conditions required for the approximate solution.

Figure 7.2: Domain discretisation.

Time-stepping

Time-stepping xi

A first-order-in-time explicit time-stepping scheme for x̃n+1
i is

x̃n+1
i = x̃n

i +∆t wn
i . (7.25)
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Another first-order-in-time explicit time-stepping scheme for (7.23) that preserves
the sign of ∆x̃m (thus avoiding mesh tangling) for any positive ∆t is, [12]

∆x̃n+1
m = ∆x̃n

m exp
(
∆t

∆wn
m

∆x̃n
m

)
(7.26)

which is equivalent to (7.25) to first order in ∆t.
Then, given x̃n+1

i at one point, in this case taken to be the fixed node x̃0, we
update the location of the nodes using ∆x̃n+1

i by

x̃n+1
i = x̃0 +

i∑
i=0

∆x̃n+1
m , i = m = 1, ..., N + 1 (7.27)

Time-stepping θ(t)
In updating the total mass θ(t), it is important to ensure that θn+1 will remain
positive so that the condition u > 0 will not be violated. In the same manner as
(7.26), the exponential time-integration scheme may be used to update θ, i.e.,

θn+1 = θn exp
(
∆t

θ̇n

θn

)
, (7.28)

ensuring that θn+1 > 0. More details on the exponential time-stepping scheme
for updating x̃ can be found in [12].

Initial conditions

Choose initial node positions x̃0
i , (i = 0, 1, .., N +1) with corresponding initial u0

i .
From the initial conditions derive ∆x0

i and compute the initial value θ0 of the
total mass θ, given by the composite trapezoidal scheme applied to (7.7),

θ0 =
1

2

N−1∑
i=0

(
x̃0
i+1 − x̃0

i

)
(u0

i + u0
i+1). (7.29)

Given θ0 we can compute the approximate relative masses γm of (7.12) by a
first-order-in-space shift to the end of the interval, i.e.,

γm =
1

θ0
(x̃0

i − x̃0
i−1)u

0
i , (i = m = 1, . . . , N + 1). (7.30)

Then at time tn for n = 1, 2, . . . , given θn, x̃n
i and un

i we calculate θn+1, x̃n+1
i and

un+1
i as follows:
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Algorithm

At each time step n,

1. Evaluate the rate of change of the total mass θ̇n by discretising (7.19) as
the boundary influx, source terms and flux due to motion as(dθ

dt

)n
=

∫ x̃n
N

x̃n
0

∂u(x, tn)

∂t
dx+ wn

x̃N
un
x̃N

− wn
x̃0
un
x̃0
.

The integral is calculated from the governing PDE where the derivative
terms are evaluated by one-sided approximation and the integration of the
reaction terms by the trapezoidal rule.

2. Evaluate the discrete velocity at interior points from (7.18), specifying an
anchor point, say x0, so that the equations for the velocity are given by

wn
i =

un
0w

n
0 −

∫ x̃n
i

x̃n
0

∂u(s,tn)
∂t

dx+ Γiθ̇

un
i

, (i = 1, . . . , N + 1), (7.31)

where Γi =
∑i

j=0 γj.
At the boundaries extrapolate the velocity from interior values. Derive
∆wn

m for all intervals.

3. Update the new ∆x̃n+1
m using the exponential time-stepping scheme (7.26).

4. Update θn+1 by the exponential time-stepping scheme (7.28).

5. Recover the solution un+1
m at the interior points from (7.24) in the form

un+1
m =

γmθ
n+1

∆x̃n+1
m

, (m = 1, . . . , N + 1) (7.32)

and determine un+1
i (i = 1, . . . , N) by one-sided approximation with un+1

0

and un+1
N being updated either from given boundary conditions or by ex-

trapolation, depending on the nature of the problem.

We now apply the theory and methodology of the moving mesh based on mass
conservation given by the algorithm above to approximate the competition-diffusion
system studied in this chapter. We also introduce a new feature of the conserva-
tion method which considers the combined mass of the species.

7.3.2 Numerical solution for a competition-diffusion sys-
tem with two interfaces and a moving boundary

We divide the domain into three regions separated by the two interfaces (Z(t)
and H(t)) as shown in Figure 7.3. Denote by RL the region on the left-hand-side
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of the moving boundary Z(t), and by RR the region on the right-hand-side of
the moving boundary H(t). The region in the middle bounded by both moving
boundaries Z(t) and H(t) is denoted by RM . Note that v(t) = 0 in RL(t) and
u(t) = 0 in RR(t).

Figure 7.3: Initial conditions for the competition system, with population density
u of species 1 in green and v of species 2 in red. The blue shows the initial
combined population density (u+v). The outer boundaries are x = 0 (fixed) and
x = S(t) (free) while the interfaces are at x = Z(t) (green/blue) and x = H(t)
(blue/red). The two interfaces are indicated by dotted lines and separate the
domain into the three regions RL,RM and RR.

As discussed above, we are considering the mass at a specific location to be
the combined mass of the densities u and v. In the conservation method, the
nodal velocities are constructed by supposing that fractions of the corresponding
relative mass are held constant in time.
For ease of exposition, we drop the tilde (˜) for the rest of the chapter.

At time level t = tn define time-dependent mesh points

0 = x0 < xn
1 < . . . < xn

ζ < . . . < xn
η < . . . < xn

N+1 = xn
σ,

where xn
ζ is the node at the moving interface Z(t), xn

η is the node at the moving
interface H(t). Let un

i and vni (0 ≤ i ≤ N + 1), approximate u(x, t) and v(x, t)
by un

i and vni respectively at these points.

For the initial conditions (at n = 0) we take the x0
i to be equally spaced and the

u0
i and v0i pointwise from an initial function
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u(x, 0) = 30, (0 ≤ x ≤ 0.46)

u(x, 0) = 480(x− 0.2)(0.7− x), (0.46 ≤ x ≤ 0.7)

u(x, 0) = 0, (0.7 ≤ x ≤ 1)

v(x, 0) = 0, (0 ≤ x ≤ 0.3)

v(x, 0) = 480(x− 1)(0.3− x), (0.3 ≤ x ≤ 1)

as shown in Figure 7.3.
The initial values θ0L, θ0M and θ0R of the total masses θ in the intervals RL,RM ,RR

respectively, of (7.29) are estimated by the composite trapezium rule. We also
use the approximations θnL ≈ θL(t

n), θnM ≈ θM(tn) and θnR ≈ θR(t
n) for the total

masses in each region at forward times. The constant-in-time relative masses γL,i,
γM,i and γR,i in the interval (xn

i−1, x
n
i ) from (7.30). Then, at each time step, we

proceed with the following calculations as indicated by the algorithm in section
7.3.1.

Having defined the initial conditions of u and v and the initial nodal positions
we proceed by calculating the mesh velocity. We first evaluate the velocities at
the moving boundaries from the boundary conditions given in the problem.

7.3.3 Velocities at the moving boundaries

In order to evaluate the nodal velocities at the moving interfaces and the outer
boundary, we apply one-sided approximation to the derivative terms of equations
(7.3), (7.4) and (7.5) for η, ζ and σ respectively,

dη

dt
= − δ1

k1

(u(η)− u(η−)

x(η)− x(η−)

)
, (7.33)

where η− is the node immediately to the left of η.

dζ

dt
= − δ2

k2

( v(ζ+)− v(ζ)

x(ζ+)− x(ζ)

)
, (7.34)

where ζ+ is the node immediately to the right of ζ.

dσ

dt
= −δ2

µ

(v(σ)− v(σ−)

x(σ)− x(σ−)

)
(7.35)

where σ− is the node immediately to the left of σ.

Given the boundary velocities, we then solve for the velocities of the inner nodes
by setting the boundary nodes as the anchor points. The procedure is as follows.
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7.3.4 Approximating the velocities and the rates of change
of the total populations

From (7.31), by setting the anchor point x0, the velocity wn
i in region RL satisfies,

wn
i u

n
i = un

0w
n
0 −

∫ xn
i

xn
0

∂u(s, tn)

∂t
dx+ ΓL,iθ̇L (xi ∈ RL),

where ΓL,i =
∑i

j=0 γL,j for i = 1, . . . ζ − 1.
By substituting the original PDE (7.1) and applying the boundary condition
w0 = 0, the equation for the node velocities in the region RL is

wn
i =

1

un
i

(
ΓL,iθ̇

n
L −

∫ xn
i

xn
0

(
δ1
∂2u

∂x2
+ r1u

(
1− u

K1

))
dx

)
, (7.36)

provided that un
i ̸= 0, since v = 0 in RL.

Performing the integration and the Neumann boundary condition at x0 the equa-
tion (7.36) becomes,

wn
i =

1

un
i

(
ΓL,iθ̇

n
L − δ1

∂u

∂x

∣∣∣∣
i

− Φn
i

)
, (1 ≤ i ≤ ζ − 1), (7.37)

where the derivative term is approximated by one-sided approximation as in
section 2.8.1. Φi denotes the integral of the reaction terms of equation (7.1)
approximated by the composite trapezium rule which has summation over j = 0
and i (i = 1, . . . , ζ − 1). In order to evaluate wn

i in (7.37) we require θ̇nL.
By setting xn

i = xn
ζ in (7.36), due to the boundary conditions and the known

velocity at the moving boundary xn
ζ , we can obtain an equation for θ̇n in the

region RL, i.e.,

θ̇nL = δ1
∂u

∂x

∣∣∣
ζ
+ Φn + uw|ζ (7.38)

since summing γL,j over j = 0 to ζ gives 1. The summation of the composite
trapezoidal rule approximation Φn is over j = 0 and i = ζ.

Similarly, from (7.31) by taking the anchor point to be xn
ζ , the velocity wn in

region RM for the combined masses of u and v satisfies

wn
i (u

n
i + vni ) = (un

ζ + vnζ )w
n
ζ −

∫ xn
i

xn
ζ

(
∂u(s, tn)

∂t
+

∂v(s, tn)

∂t

)
dx+ ΓM,iθ̇M , (xi ∈ RM),

where ΓM,i =
∑i

j=ζ γM,j for i = ζ + 1, . . . η − 1.
By substituting the original PDEs (7.1) and (7.2) and applying the boundary
conditions, the equation for the node velocities in the region RM is
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wn
i =

1

(un
i + vni )

(
ΓM,iθ̇

n
M

−
∫ xn

i

xn
ζ

(
δ1
∂2u

∂x2
+δ2

∂2v

∂x2
+r1u

(
1−u+ k1v

K1

)
+r2v

(
1− v + k2u

K2

))
dx+(u+v)w|ζ

)
,

(7.39)
provided that un

i + vni ̸= 0.
Performing the integration, equation (7.39) becomes,

wn
i =

1

(un
i + vni )

(
ΓM,iθ̇

n
M − δ1

∂u

∂x

∣∣∣∣i
ζ

− δ2
∂v

∂x

∣∣∣∣i
ζ

−Ψn
i −Υn

i + (u+ v)w|ζ

)
, (ζ + 1 ≤ i ≤ η − 1),

(7.40)

where Ψn
i and Υn

i denote the composite trapezoidal rule approximations for the
reaction terms of (7.1) and (7.2) respectively with summation from j = ζ to i
(i = ζ + 1, . . . , η − 1).
By setting i = η and since summing γM,j over j = ζ to η gives 1, the equation
for θ̇n in region RM is given by

θ̇nM = δ1
∂u

∂x

∣∣∣η
ζ
+ δ2

∂v

∂x

∣∣∣η
ζ
+Ψn +Υn + (u+ v)w|ηζ . (7.41)

Here the composite trapezoidal rule approximations Ψn and Υn with summation
from j = ζ to i = η.
Finally from (7.31) by taking the anchor point xn

η , the velocity wn in region RR

where only v exists is given by

wn
i v

n
i = vnηw

n
η −

∫ xn
i

xn
η

∂v(s, tn)

∂t
dx+ ΓR,iθ̇R, (xi ∈ RR),

where ΓR,i =
∑i

j=η γR,j for i = η + 1, . . . σ − 1.
By substituting the original PDE (7.2), the equation for the node velocities in
the region RR is

wn
i =

1

vni

(
ΓR,iθ̇

n
R −

∫ xn
i

xn
η

(
δ2
∂2v

∂x2
+ r2v

(
1− v

K2

))
dx+ vw|η

)
(7.42)
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since u = 0 in RR, provided that vni ̸= 0.
Performing the integration, equation (7.42) becomes,

wn
i =

1

vni

(
ΓR,iθ̇

n
R − δ2

∂v

∂x

∣∣∣∣i
η

− Ξn
i + vw|η

)
, (η + 1 ≤ i ≤ σ − 1). (7.43)

Ξn
i is the composite trapezoidal rule approximation of the reaction terms of equa-

tion (7.2) with summation from j = η to i (i = η + 1, . . . σ − 1).
The equation for θ̇n in region RR is obtain from equation (7.42) by setting i = σ,
i.e.,

θ̇nR = δ2
∂v

∂x

∣∣∣σ
η
+ Ξn + vw|σ − vw|η, (7.44)

where the composite trapezoidal rule approximation Ξn with summation from
j = η to i = σ.
Having found the velocities for all the nodes in the domain we update the nodal
positions.

7.3.5 Time-stepping

As discussed in Section 7.3.1, a first-order exponential scheme is used to update
both the node positions of xn+1

i , i.e.,

∆xn+1
i = ∆xn

i exp
(
∆t

∆wn
i

∆xn
i

)
. (7.45)

Although the above exponential time stepping scheme is a first-order scheme as
the explicit Euler scheme, it ensures a positive value of ∆xn+1

i and hence avoids
node tangling.
In a similar manner, the new θn+1 is updated by

θn+1 = θn exp
(
∆t

θ̇n

θn

)
. (7.46)

7.3.6 The population densities

Having found the new positions of the nodes, all that is left now is to determine
the approximate population densities u and v at the moved nodes at the new
time t = tn+1.

Once the xn+1
i have been found, we find an approximation solution for the pop-

ulation densities un+1 and vn+1. Instead of using the conservation principle as
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follows by the algorithm in 7.3.1, equation (7.32), we use the mass balance equa-
tions for the u and v local masses to update u and v individually throughout
the domain. The rate of change of the mass equals the augmented flux (i.e.,
inward/outward flux and the flux due to motion) and the reaction terms. Thus,
using the velocities and the updated x-positions found above, we can update u
and v individually throughout the domain using the Leibniz integral rule or the
Arbitrary Lagrangian equation [52] in the following form

d

dt

∫ xi

xi−1

u dx =

∫ xi

xi−1

∂u

∂t
dx+

∫ xi

xi−1

∂

∂x
(uw) dx, (i = 1, . . . , η − 1) (7.47)

d

dt

∫ xi+1

xi

v dx =

∫ xi+1

xi

∂v

∂t
dx+

∫ xi+1

xi

∂

∂x
(vw) dx, (i = ζ + 1, . . . , N). (7.48)

Note that ui = 0 for i = η, .., N + 1 and vi = 0 for i = 0, . . . , ζ.
In detail, substituting equations (7.1) and (7.2) into the right hand sides of (7.47)
and (7.48) gives,

d

dt

∫ xi

xi−1

u dx =

∫ xi

xi−1

δ1
∂2u

∂x2
dx+

∫ xi

xi−1

r1u
(
1− u+ k1v

K1

)
dx

+

∫ xi

xi−1

∂

∂x
(uw) dx, (i = 1, . . . , η − 1)

d

dt

∫ xi+1

xi

v dx =

∫ xi+1

xi

δ2
∂2v

∂x2
dx+

∫ xi+1

xi

r2v
(
1− v + k2u

K2

)
dx

+

∫ xi+1

xi

∂

∂x
(vw) dx, (i = ζ + 1, . . . , N).

Performing the integration on the right-hand side,

d

dt

∫ xi

xi−1

u dx = δ1
∂u

∂x

∣∣∣i
i−1

+

∫ xi

xi−1

r1u
(
1− u+ k1v

K1

)
dx

+ uw|ii−1, (i = 1, . . . , η − 1)

d

dt

∫ xi+1

xi

v dx = δ2
∂v

∂x

∣∣∣i+1

i
+

∫ xi+1

xi

r2v
(
1− v + k2u

K2

)
dx

+ vw|i+1
i , (i = ζ + 1, . . . , N).
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Now integrate in time,

un+1
i =

1

xn+1
i − xn+1

i−1

(
un
i (x

n
i − xn

i−1) + ∆t
(
δ1
∂un

∂x

∣∣∣i
i−1

+

∫ xn
i

xn
i−1

r1u
n
(
1− un + k1v

n

K1

)
dx+ unwn|ii−1

))
, (i = 1, . . . , η − 1) (7.49)

vn+1
i =

1

xn+1
i+1 − xn+1

i

(
vni (x

n
i+1 − xn

i ) + ∆t
(
δ2
∂vn

∂x

∣∣∣i+1

i

−
∫ xn

i+1

xn
i

r2v
n
(
1− vn + k2u

n

K2

)
dx+ vnwn|i+1

i

))
, (i = ζ + 1, . . . , N). (7.50)

Note that vnN+1 = 0 and un
0 can be found by (7.12) by a first-order-in-space shift

to the end of the interval and since the relative masses γm are constant in time
the value of un

0 can be evaluated by

1

θ0L
(x0

1 − x0
0)u

0
0 =

1

θnL
(xn

1 − xn
0 )u

n
0 . (7.51)

and hence
un
0 =

θnL
θ0L

(x0
1 − x0

0)

(xn
1 − xn

0 )
u0
0. (7.52)

The algorithm in this chapter for the approximate solution of the Lotka-Volterra
competition diffusion system of cohabiting species (7.1) and (7.2) using the mov-
ing mesh finite difference method based on conservation and the combined mass
procedure can be summarised as follows.

7.3.7 Algorithm for the competition-diffusion system

First evaluate the combined mass θL, θM and θR by (7.29), noting that u = 0 in
RR and v = 0 in RL and calculate γm in each interval m, for each region by (7.30).

Then, at each time step we proceed with the following calculations:

1. Evaluate the rate of change of mass in each region θ̇nL, θ̇nM and θ̇nR by (7.38),
(7.41) and (7.44) respectively.
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2. Evaluate the velocities at the two interfaces by (7.33) and (7.34) and at the
free boundary by (7.35). Calculate the nodal velocities wn+1

i in each region
by (7.37), (7.40) and (7.43). For RL the anchor point is taken at x0, in
region RM is taken at xζ and in region RR at xη.

3. Update the new nodal positions xn+1
i and the new masses θn+1

L , θn+1
M and

θn+1
R by the exponential time-stepping scheme ((7.45) and (7.46)).

4. Recover the solutions un+1
i for i = 0, . . . , η−1 and vn+1

i for i = ζ+1, . . . , N
by the use of the mass balance equations and the updated nodal positions
xn+1
i from equations (7.49) and (7.50) respectively.

In order to check whether the procedure of using a single mesh for the com-
bined mass is reliable for solving the two-component Lotka-Volterra competition-
diffusion model, we first compared our results against the standard, well-established,
moving mesh finite difference method of [11, 103], where each species’ equation
was solved on a unique mesh and coupling terms were approximated using inter-
polation.

7.4 Results
The scheme is found to be stable and robust for a variety of parameter choices.
Even though the use of the exponential time-stepping scheme ensured that no
tangling would occur, it remains an explicit scheme. Therefore, the time step was
restricted by stability considerations. For this reason, the time-step value was set
at ∆t = 0.0005.

7.4.1 Symmetrical case

In order to check whether the procedure of using a single mesh for the com-
bined mass is reliable for solving the two-component Lotka-Volterra competition-
diffusion model, we experimented with the symmetrical problem of (7.1) and
(7.2). Species are allocated with equal value parameters as well as the same
initial conditions, symmetrical by x = 0.5, as shown by Figure 7.4. The nodal
velocity condition of the left-end node of the domain, x = ξ(t), is set to have
the same form as the one on the right-end but depending on the gradient of u
i.e., dξ

dt
= − δ1

µ

(
∂u
∂x

) ∣∣
x=ξ

(cf. (7.5)). If the method of combined masses is able to
maintain the properties of the model as well as the geometry, it’s an indication
that the method is well grounded. Figure 7.5 shows how the population densi-
ties evolve through time with the parameters δ1 = δ2 = 0.001, K1 = K2 = 100,
k1 = k2 = 1, r1 = r2 = 1. The population densities of the species are symmetrical
about the axis of symmetry x = 0.5 and the velocities of the nodes are equal in
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magnitude but opposite in signs. We observe a symmetrical spread of the nodes,
without mesh tangling.
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Figure 7.4: Symmetrical (around x = 0.5) initial conditions for the competition-
diffusion system, with population densities u, v and (u+ v) shown in green, red
and blue colour respectively.
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Figure 7.5: The approximated solution evolution through time of the symmetrical
case at t = 20 with parameter values δ1 = δ2 = 0.001, K1 = K2 = 100, k1 = k2 =
1, r1 = r2 = 1. Initial conditions are shown in black colour.

7.4.2 Parameter choices

For the following examples, we have used the initial conditions illustrated in
Figure 7.3. The mass of species 2 is set initially to be greater than species 1
and species 2 can escape the overlapping region through the outer right moving
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boundary. Species 1 is restricted by the left-hand-side stationary boundary where
we have imposed a zero Neumann boundary condition which implies no migration.
The default variables used for the simulations, δ1 = δ2 = 0.001, K1 = K2 = 100,
r1 = r2 = 1 and µ = 50, are similar to the ones used in [11] and [177] for
the extreme case of the competition-diffusion system (7.1) and (7.2), presented
in [75], where the competition parameters k1 and k2 are very large to spatially
segregate the two populations. Here, we instead use the competition parameters
k1 = k2 = 1 to model a system where species are competing for common resources
but they can coexist in space. A sensitivity analysis was carried out by varying
one parameter at a time to test the robustness of the results which showed that
the model and the numerical method produce stable results for each parameter
change. A selection of results is presented below which indicates that the method
is likely to be able to satisfy the requirements of modelling a wide variety of
competition systems.

In the following figures, the initial conditions are shown in black while green, blue
and red indicate respectively how the population densities u, u+ v and v evolve
over time. All results are run with a time step 0.0005 and we plot the results for
every step of 0.25.

Figure 7.6 shows the evolution of the populations as time progresses using δ1 =
δ2 = 0.001, K1 = K2 = 100, k1 = k2 = 1, r1 = r2 = 1 and µ = 50. The two
populations have both reached their maximum carrying capacities and individuals
are spreading throughout the domain through the moving boundaries.
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Figure 7.6: Result of competition-diffusion model at t = 10. Here we use δ1 =
δ2 = 0.001, K1 = K2 = 100, k1 = k2 = 1, r1 = r2 = 1 and µ = 50. Both species
have reached their maximum carrying capacities (K1 and K2) and diffuse in the
domain through the moving boundaries.

145



We investigate other parameter choices. We have selected a conservatively rep-
resentative set of parameters, chosen to demonstrate some of the interesting be-
haviours that this model is able to describe.

Decreasing the carrying capacity K2

For Figure 7.7 we have used the same parameter values as the example above
except for the carrying capacity of species 2 which is set to be lower (K2 = 60
instead of K2 = 100). We restrict the growth of species 2 by lowering its carrying
capacity and in comparison, to Figure 7.6, we observe that the decrease in the
carrying capacity has caused the population to disperse less through the moving
boundaries. Species 1 on the other hand is being benefitted from the restriction
of species 2 to increase its mass, and species 1 disperses faster in the domain
through the moving boundary, taking over most of the domain.
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Figure 7.7: Result of competition-diffusion model at t = 10. Here we use δ1 =
δ2 = 0.001, k1 = k2 = 1, K1 = 100, K2 = 60, r1 = r2 = 1 and µ = 50. The
restriction on the carrying capacity of species 2 has caused the inability to increase
its mass resulting in species 1 taking over most of the domain.

Increasing the competition rate k2

The following result in Figure 7.8 is focused on the effect of changing the compe-
tition parameter. We have increased the competition parameter of species 2 (k2)
by a factor of 5. As shown in Figure 7.8, due to the high competition of species 2,
the population of species 2 is shifting towards the right-hand side of the domain,
away from the overlapping region.
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Figure 7.8: Result of competition-diffusion model at t = 10. Here we use δ1 =
δ2 = 0.001, k1 = 1, k2 = 5, K1 = K2 = 100, r1 = r2 = 1 and µ = 50. Due to the
high competition rate of species 1, species 2 is unable to compete.

Decreasing the diffusion coefficient δ1

In Figure 7.9 we have decreased the diffusion coefficient of species 1 by a factor
of 10. As expected, that has restricted the ability of species 1 to disperse in the
domain compared to Figure 7.6.
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Figure 7.9: Result of competition-diffusion model at t = 8. Here we use δ1 =
0.0001, δ2 = 0.001, k1 = k2 = 1, K1 = K2 = 100, r1 = r2 = 1 and µ = 50.

Decreasing the parameter µ

Lastly, in Figure 7.10 we are investigating the µ parameter in the boundary
condition at the right-hand side outer moving boundary. We set µ = 1 instead
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of µ = 50 as used before. In [33] is shown that µ is inversely proportional to the
preferred population density at the spreading front. Thus increasing 1

µ
causes

the population to disperse more through the moving boundary in its effort to
increase the population density, as shown in Figure 7.10. We can also observe
that the velocity of the right-hand-side outer moving boundary is increasing at
earlier times and remains constant for the rest of the time.
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Figure 7.10: Result of competition-diffusion model at t = 10. Here we use
δ1 = δ2 = 0.001, k1 = k2 = 1, K1 = K2 = 100, r1 = r2 = 1 and µ = 1.
Decreasing µ has caused the population to disperse more through the boundary
and the velocity of the moving boundary is slightly increasing at earlier times
and remains constant for the rest of the time.

We have given details of applying the moving mesh method based on the combined
mass approach to the one-dimensional competition-diffusion system. We now
demonstrate that the same method can be applied to the two-dimensional radially
symmetric case of the system.

7.5 The Two-Dimensional Radially Symmetric
Competition-Diffusion System of Cohabiting
Species with Moving Boundaries

We use the moving mesh method based on the combined approach described in
Section 7.3.1 to approximate the radial case of (7.1) and (7.2) in two dimensions,
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∂u

∂t
=

1

r

∂

∂r

(
δ1r

∂u

∂r

)
+

1

r2
∂

∂ϕ

(
δ1
∂u

∂ϕ

)
+ r1u

(
1− u+ k1v

K1

)
r ∈ R1, t > 0

(7.53)

∂v

∂t
=

1

r

∂

∂r

(
δ2r

∂v

∂r

)
+

1

r2
∂

∂ϕ

(
δ2
∂v

∂ϕ

)
+ r2v

(
1− v + k2u

K2

)
r ∈ R2, t > 0.

(7.54)
The domains R1 and R2 are occupied by species u and v respectively, and partly
overlap.

When a two-dimensional problem in cylindrical or spherical co-ordinates possesses
circular symmetry (i.e., no ϕ dependence), then ∂2u

∂ϕ2 = ∂2v
∂ϕ2 = 0, and equations

(7.53) and (7.54) simplify to

∂u

∂t
=

1

r

∂

∂r

(
δ1r

∂u

∂r

)
+ r1u

(
1− u+ k1v

K1

)
r ∈ R1, t > 0 (7.55)

and

∂v

∂t
=

1

r

∂

∂r

(
δ2r

∂v

∂r

)
+ r2v

(
1− v + k2u

K2

)
r ∈ R2, t > 0, (7.56)

respectively, with the boundary condition on the left-hand-side stationary bound-
ary,

∂u

∂r
= 0 t > 0, r = 0. (7.57)

where the conditions at the inner interfaces η(t) and ζ(t) are

dη

dt
= − δ1

K1

(
∂u

∂r

)∣∣∣∣
r=η

and u(η(t), t) = 0 (7.58)

and
dζ

dt
= − δ2

K2

(
∂v

∂r

)∣∣∣∣
r=ζ

and v(ζ(t), t) = 0, (7.59)

respectively.
Lastly, for the free boundary on the right-hand side, the assigned conditions are

dσ

dt
= −δ2

µ

(
∂v

∂r

)∣∣∣∣
r=σ

and v(σ(t), t) = 0. (7.60)
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7.5.1 Numerical solution for the radial coordinates case

We slightly vary the notation from Section 7.3.1 such that the space variable x
is replaced by r and w replaced by z. We use r̃i(t

n) ≈ rni , i = 0, 1, . . . , N , to
denote the ith node along the radius of the mesh, at time n∆t, n = 0, 1, . . . . The
corresponding solutions notation is u(̃ri, tn) = ũi(t

n) ≈ un
i and v(̃ri, t

n) = ṽi(t
n) ≈

vni ,and the velocity of each node is z(̃ri, t
n) = z̃i(t) =

dr̃i
dt

.

We use a similar procedure to the one given carried out in Section 7.3.1, to
show that, given a mesh along a radius r̃i(tn), with corresponding solution ũi(t

n)
(or ṽi(t

n)), the updated mesh along a radius r̃i(t
n+1) and solution ũi(t

n+1) (or
ṽi(t

n+1)) can be found by computing a mesh velocity z̃i(t
n).

The mass in the interval m is

θm(t) = r̃m(t)ũm(t)∆r̃m.

Having divided the domain into three regions namely RL, RM and RR, separated
by the two inner interfaces η and ζ, we then evaluate the initial values θ0L, θ0M and
θ0R of the total masses θ in each region, by (7.61) using the composite trapezium
rule, (cf. (7.29))

θ0 =
1

4

N−1∑
i=0

(
r0i+1 − r0i

)
(r0i + r0i+1)(u

0
i + u0

i+1). (7.61)

The constant-in-time relative masses γL,i, γM,i and γR,i in the interval (rni−1, r
n
i )

is given by, (cf. (7.30))

∫
m

um(̃r, t)̃rm(t) dr = γm

γm =
1

θ0
(r0i − r0i−1)r

0
i u

0
i , (i = m = 1, . . . , N). (7.62)

7.5.2 Approximating the mesh velocities and the rates of
change of the total populations

As with the one-dimensional case, we seek a mesh velocity by differentiating a
relative mass û in an interval m with respect to time, using the Leibniz integral
rule and the relative mass balance, i.e., (cf. (7.31))

d

dt

∫
m

r̃(t)û(̃r, t) dr =

∫
m

r̃(t)
∂û(̃r, t)

∂t
dr + [̃r(t)û(̃r, t)ẑ(̃r, t)]m = 0
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=
1

θ

(∫
m

r̃(t)
∂u(̃r, t)

∂t
dr − γmθ̇

)
+ [̃r ˆ̃uˆ̃z]m = 0

giving,

[̃r ˆ̃uˆ̃z]m = −1

θ

(∫
m

r̃(t)
∂u(̃r, t)

∂t
dr − γmθ̇

)
.

Since ˆ̃uˆ̃z denote the relative masses, [̃r ˆ̃uˆ̃z]mθ = [̃rũz̃]m yielding to

z̃m =
1

r̃mũm

(
γmθ̇ −

∫
m

r̃(t)
∂u(̃r, t)

∂t
dr

)
. (7.63)

For the region RL, by taking the anchor point at r = 0, from (7.63), the velocity
zni satisfies,

rni u
n
i z

n
i = rn0u

n
0z

n
0 −

∫ rni

rn0

r
∂u

∂t
dr + γL,iθ̇L, (ri ∈ RL),

since v = 0 in RL.
Substituting for ∂u

∂t
from (7.53), evaluating the integral, and cancelling terms due

to the boundary condition (7.57) gives, (cf. (7.37))

zni =
1

rni u
n
i

(
γLiθ̇

n
L − δ1r

n
i

∂u

∂r

∣∣∣
i
−
∫ rni

rn0

r r1u

(
1− u

K1

)
dr

)
, (1 ≤ i ≤ ζ − 1),

(7.64)
provided that un

i ̸= 0.
By setting ri = rζ in (7.64), we can obtain an equation for θ̇n in region RL, i.e.,
(cf. (7.38))

θ̇nL = δ1r
n
ζ

∂u

∂x

∣∣∣
ζ
+

∫ rnζ

rn0

r r1u

(
1− u

K1

)
dr + rnunzn|ζ . (7.65)

Similarly, for the velocity zni in region RM we take the anchor point to be r = ζ,
therefore by (7.63)

rni (u
n
i + vni )z

n
i = rnζ (u

n
ζ + vnζ )z

n
ζ−∫ rni

rnζ

r

(
∂u(r, tn)

∂t
+

∂v(r, tn)

∂t

)
dr + γM,iθ̇M , (ri ∈ RM).

By substituting the original PDEs (7.55) and (7.56) and applying the boundary
conditions in (7.58) and (7.59), the equation for the node velocities in region RM

is (cf. (7.40))

zni =
1

rni (u
n
i + vni )

(
γM,iθ̇

n
M − δ1

[
rn
∂u

∂r

]i
ζ

+ δ2

[
rn
∂v

∂r

]i
ζ
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+

∫ rni

rnζ

r

(
r1u

(
1− u+ k1v

K1

)
+ r2v

(
1− v + k2u

K2

))
dr

+ rn(un + vn)zn|ζ

)
, (7.66)

provided that un
i ̸= 0 and vni ̸= 0.

Setting ri = rη gives the equation for θ̇n in region RM , i.e., (cf. (7.41))

θ̇nM = δ1

[
rn
∂u

∂x

]η
ζ

+ δ2

[
rn
∂v

∂x

]η
ζ

−
∫ rnη

rnζ

r

(
r1u

(
1− u+ k1v

K1

)
+ r2v

(
1− v + k2u

K2

))
dr − [rn(un + vn)zn]ηζ .

(7.67)
Finally for region RR, from (7.63), by taking η to be the anchor point x = η, the
velocity zn is given by

rni u
n
i z

n
i = rnηu

n
ηz

n
η −

∫ rni

rnη

r
∂v

∂t
dr + γR,iθ̇R, (ri ∈ RR),

since u = 0 in RR.
We substitute the original PDE (7.56) and the boundary conditions to get the
equation for the node velocities in region RR (cf. (7.43))

zni =
1

rni v
n
i

(
γR,iθ̇

n
R−δ2

[
rn
∂v

∂r

]i
η

+

∫ rni

rnη

r

(
r2v

(
1− v

K2

))
dr+ rnvnzn|η

)
, (7.68)

provided that vni ̸= 0.
The equation for θ̇n in region RR is obtain from equation (7.68) by setting i = σ,
i.e., (cf. (7.44))

θ̇nR = δ2

[
rn
∂v

∂r

]σ
η

+

∫ rnσ

rnη

r

(
r2v

(
1− v

K2

))
dr + [rnvnzn]ση . (7.69)

7.5.3 The velocities of the moving interfaces and the free
boundary

In order to evaluate the nodal velocities at the moving interfaces η, ζ and the
outer boundary σ, we apply one-sided approximation to the derivative terms of
equations (7.58), (7.59) and (7.60) for xη, xζ and xσ respectively,

dη

dt
= − δ1

K1

(u(η)− u(η−)

r(η)− r(η−)

)
, (7.70)
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where η− is the node immediately to the left of η,

dζ

dt
= − δ2

K2

(v(ζ+)− v(ζ)

r(ζ+)− r(ζ)

)
, (7.71)

where ζ+ is the node immediately to the right of ζ and

dσ

dt
= −δ2

µ

(v(σ)− v(σ−)

r(σ)− r(σ−)

)
, (7.72)

where σ− is the node immediately to the left of σ.

7.5.4 Time-stepping

As in Section 7.3.5 using the evaluated nodal velocities we use the first-order
exponential scheme to update the node positions rn+1

i and the new θn+1, i.e.,

∆rn+1
i = ∆rni exp

(
∆t

∆zni
∆rni

)
(7.73)

and

θn+1 = θn exp

(
∆t

θ̇n

θn

)
. (7.74)

Having found the new nodal positions and the new θ we can approximate the
population densities u and v at the new time tn+1.

7.5.5 The population densities

We could update the population densities û(̃r, t) and v̂(̃r, t) by the use of the ALE
equation as in Section 7.3.6. However, since the combined population density
(u(̃r, t) + v(̃r, t)) only exists in the middle section RM we only use the ALE to
update each population in this region. For the regions RL and RR we can update
û(̃r, t) and v̂(̃r, t), respectively by (cf. (7.24))∫

m

um(̃r, t)̃r dr = γmθ(t)

and ∫
m

vm(̃r, t)̃r dr = γmθ(t).

Hence, in region RL we approximate un+1 by

un+1
i =

γiθ
n+1
L

rn+1
i (rn+1

i+1 − rn+1
i )

, (0 ≤ i ≤ ζ − 1), (7.75)
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un+1
i =

γiθ
n+1
L

rn+1
i (rn+1

i − rn+1
i−1 )

, (i = ζ), (7.76)

and in region RR we approximate the population density vn+1 by

vn+1
i =

γiθ
n+1
R

rn+1
i (rn+1

i − rn+1
i−1 )

, (σ + 1 ≤ i ≤ N + 1) (7.77)

and

vn+1
i =

γiθ
n+1
R

rn+1
i (rn+1

i+1 − rn+1
i )

, (i = σ). (7.78)

Lastly, to get update the population densities un+1 and vn+1 in the middle region
RM , as in Section 7.3.6, the mass balance equations are used together with the
Leibniz integral rule, i.e., (cf. (7.47) & (7.48))

d

dt

∫ rni+1

rni

u dr =

∫ rni+1

rni

r
∂u

∂t
dr +

∫ rni+1

rni

∂

∂r
(ruz) dr, (i = ζ, .., η − 1)

d

dt

∫ rni+1

rni

v dr =

∫ rni+1

rni

r
∂v

∂t
dr +

∫ rni+1

rni

∂

∂r
(rvz) dr, (i = ζ, .., η − 1).

Substituting equations (7.55) and (7.56) and performing the integration gives,

d

dt

∫ rni+1

rni

u dr = δ1

[
rn
∂u

∂r

]i+1

i

+

∫ rni+1

rni

r r1u
(
1− u− k1v

K1

)
dr + [rnunzn]i+1

i

d

dt

∫ rni+1

rni

v dr = δ2

[
rn
∂v
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]i+1

i

+

∫ rni+1

rni

r r2v
(
1− v − k2u

K2

)
dr + [rnvnzn]i+1

i .

By integrating in time

un+1
i =

1

rn+1
i (rn+1

i+1 − rn+1
i )

(
un
i r

n
i (r

n
i+1 − rni ) + ∆t

(
δ1

[
rn
∂u

∂r

]i+1

i

+

∫ rni+1

rni

r r1u
(
1− u− k1v

K1

)
dr + [rnunzn]i+1

i

))
(7.79)

for i = ζ, .., η − 1, and
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un+1
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i (rn+1

i − rn+1
i−1 )

(
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i r

n
i (r
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(
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(7.80)

for i = η.

Likewise for the equation of v,

vn+1
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1
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i (rn+1

i+1 − rn+1
i )

(
vni r

n
i (r

n
i+1 − rni ) + ∆t

(
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−
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(
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i

))
(7.81)

for i = ζ, .., η − 1 and

vn+1
i =

1

rn+1
i (rn+1

i − rn+1
i−1 )

(
vni r

n
i (r

n
i − rni−1) + ∆t

(
δ2

[
rn
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∂r

]i
i−1

+

∫ rni

rni−1

r r2v
(
1− v − k2u

K2

)
dr + [rnvnzn]ii−1

))
(7.82)

for i = η.

The algorithm for the Lotka-Volterra competition diffusion system of cohabit-
ing species (7.55) and (7.56) in radial coordinates using the moving mesh finite
difference method together with the combined mass approach is as follows.

7.5.6 Algorithm for the competition-diffusion system in ra-
dial coordinates

First evaluate the combined mass θL, θM and θR by (7.80), noting that u = 0
in RR and v = 0 in RL and calculate γm in each interval m, for each region by
(7.62).
Then, at each time step we proceed with the following calculations:

1. Evaluate the rate of change of mass in each region θ̇nL, θ̇nM and θ̇nR by (7.65),
(7.67) and (7.69) respectively.

2. Evaluate the velocities at the two interfaces by (7.70) and (7.71) and at the
free boundary by (7.72). Calculate the nodal velocities zn+1

i in each region

155



by (7.64), (7.66) and (7.68). For RL the anchor point is taken at r0, in
region RM is taken at rζ and in region RR at rη.

3. Update the new nodal positions rn+1
i and the new masses θn+1

L , θn+1
M and

θn+1
R by the exponential time-stepping scheme ((7.73) and (7.74)).

4. Recover the solution un+1
i in region RL by equation (7.75) and vn+1

i in
region RR by equation (7.77). un+1

i at i = ζ is calculated by (7.76) and
vn+1
i at i = η by equation (7.78).

5. Obtain un+1
i and vn+1

i in region RM by the use of the mass balance equa-
tions and the updated nodal positions rn+1

i from equations (7.79) and (7.81)
respectively. The un+1

i and the vn+1
i at i = η are evaluated by (7.80) and

(7.82).

7.5.7 Results

The moving mesh method for the radial case solves the L-V competition diffusion
system along a line 0 ≤ r ≤ rN and then uses radial symmetry to give the solution
over a complete circle, see Figure 7.11b. We use the same set of parameter choices
as in the one-dimensional Cartesian coordinates case and the mesh is constructed
initially with N = 100 equispaced nodes. We use the same time step value
∆t = 0.5× 10−3 for all the simulations.

Throughout the runs, in the one-dimensional representation of the results (over
the line 0 ≤ r ≤ rN) u, v and u+v are shown in green, red and blue colour respec-
tively where in the two-dimensional representation (over the complete circle) the
half torus shape in red colour on the outer region depicts the v population where
the shape in green colour in the middle of the graph represents the population u.

156



Initial conditions

Figure 7.11 illustrates the initial conditions of populations u, v and u+ v which
have been used for all the examples presented in this section. Initial conditions
are shown over the line 0 ≤ r ≤ rN and over the complete circle in Figures 7.11a
and 7.11b, respectively.
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(a) The initial conditions of the populations u (green), v (red) and u+v (blue)
along the line 0 ≤ r ≤ rN .

(b) The 2-dimensional radial L-V competition diffusion model initial conditions
of u and v.

Figure 7.11: Initial conditions.
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Approximated solution at t = 5

The first set of parameter values, δ1 = δ2 = 0.001, k1 = k2 = 1, K1 = K2 = 100,
r1 = r2 = 1 and µ = 50, gives the results in Figures 7.12a and 7.12b . The results
in Figure 7.12a shows the results along the line 0 ≤ r ≤ rN , plotted for every
0.2 time-steps up to t = 5. We observe very similar results when comparing the
approximated solution in Figure 7.12a with the results of the one-dimensional
case (Figure 7.6). Figure 7.12b shows the results at t = 5 over the complete
circle.
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(a) The approximated solutions u (green), v (red) and u+ v (blue) plotted for
every 0.20 time steps with final time t = 5.

(b) The approximated solutions of u and v at t = 5 of the 2-dimensional radial
L-V competition diffusion model.

Figure 7.12: The result of the competition-diffusion model at t = 5. Here we use
δ1 = δ2 = 0.001, k1 = k2 = 1, K1 = K2 = 100, r1 = r2 = 1 and µ = 50.
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Mesh evolution through time

Figure 7.13a shows the smooth trajectories of the mesh nodes and the direction of
the inner interfaces and the moving boundary. The black bold lines represent the
nodes at the inner interfaces r = η and r = ζ and the node at the free boundary
r = σ, starting from the left-hand side, respectively. Figure 7.13b shows the final
node positions at t = 5 over the complete circle.
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(a) The mesh trajectory.

(b) The mesh for the two-dimensional, radial L-V competition diffusion model.

Figure 7.13: The mesh evolution for the radial case of the competition-diffusion
model at t = 5 with parameter values δ1 = δ2 = 0.001, k1 = k2 = 1, K1 =
100, K2 = 100, r1 = r2 = 1 and µ = 50.
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Different parameter choices

We investigate different parameter sets by varying one parameter each time. For
the first set of parameters, we have chosen to decrease the carrying capacity of
species 2 to K2 = 60, instead of K2 = 100 used in the previous set. In the second
set of parameters, we set the competition rate of species 2 to be 5 times higher
than before (k2 = 5 instead of k2 = 1). Figures 7.14 and 7.15 show the results at
time t = 8 for each set of parameters, respectively. Figures 7.14a and 7.15a show
how the solutions evolve in time on the line 0 ≤ r ≤ rN while Figures 7.14b and
7.15b show the final results at t = 5 over the complete circle. The model and
the method used have proven to produce biologically relevant results in response
to the parameter being altered and the results are matching the ones from the
one-dimensional Cartesian coordinates case. We observe that the variation in
the parameter values are affecting both the Cartesian coordinate and the radially
symmetric cases in a similar manner. We notice a smooth spread of the nodes,
without any tangling in both cases.
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(a) The approximated solutions u (green), v (red) and u+ v (blue) plotted for
every 0.20 time steps with final time t = 8.

(b) The approximated solutions of u and v at t = 8 of the 2-dimensional radial
L-V competition diffusion model.

Figure 7.14: The result of the competition-diffusion model at t = 8 with δ1 =
δ2 = 0.001, k1 = k2 = 1, K1 = 100, K2 = 60, r1 = r2 = 1 and µ = 50.
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(a) The approximated solutions u (green), v (red) and u+ v (blue) plotted for
every 0.20 time steps with final time t = 7.

(b) The approximated solutions of u and v at t = 7 of the 2-dimensional radial
L-V competition diffusion model.

Figure 7.15: The result of the competition-diffusion model at t = 7. Here we use
δ1 = δ2 = 0.001, k1 = 1, k2 = 5, K1 = K2 = 100, r1 = r2 = 1 and µ = 50.

7.6 Discussion
In this chapter, we have described a one-dimensional moving mesh finite difference
numerical method based on local mass conservation for the approximate solution
of a two-species Lotka-Volterra (L-V) competition system with a free boundary
and moving internal interfaces.

The system consists of two species governed by coupled Lotka-Volterra equa-
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tions in one dimension, partially coexisting in space and competing for common
resources. The domain has a moving outer boundary and there are moving inter-
faces in the interior where species arise, overlap or disappear. We therefore con-
sidered an L-V model with distinct moving regions in which species are smooth,
separated by interfaces with interface conditions.

Numerically, rather than allocate a separate mesh to each species (which would
have led to the need for interpolation and a generally messy scheme), we used a
single moving mesh for both species and adjusted the solution using the Arbitrary
Lagrangian Euler (ALE) equations. The mesh is generated by preserving the
total sum of local densities (therefore masses) at a point in time. We called this
the combined mass approach, which allows the use of a single moving mesh in
overlapping regions and handles moving interfaces. The combined mass procedure
is general and can be applied to other overlapping situations.

We used a method to move the nodes based on the preservation of relative densi-
ties (i.e., those normalised by the total mass) since relative masses are conserved.
Once the nodes had been moved, the local densities of each species were com-
puted from ALE schemes. Throughout the chapter, we used an exponential time
integrating scheme for nodal intervals which produces non-tangling meshes and
is stable for sufficiently small time steps.

First, we solved the system using symmetrical initial conditions to ensure that the
combined mass approach will maintain the symmetric properties of the problem,
i.e., symmetric node velocities and solution. Then we implemented the model for
a number of parameter combinations and observed a variety of scenarios. We have
altered one parameter at a time from the initial set of parameters and observed
various effects dominating in turn as the populations evolve through time. The
illustrations indicate that the method is stable for a variety of different set-up
parameters and can be applied to many other competition problems.

We also demonstrated that our moving mesh method with the combined mass
approach can easily be extended to the radially symmetric two-dimensional case.
However, when using finite differences, the two-dimensional case must be radially
symmetric, which is not a limitation when using the finite element method. An
advantage of using finite elements for the general two-dimensional case (instead
of the radial case) is that the method can be applied to more general domains.

This chapter is proof-of-concept rather than exhaustive and can be refined in a
number of ways. Also, the time step can be made semi-implicit, allowing larger
time steps, albeit at the risk of losing accuracy.

We conclude that the approach can be used on a variety of ecological models
involving multi-species populations and moving boundaries, and is capable of
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simulating complex behaviour.

Future work will also include the adaptation of the parameters for use on empirical
data sets and comparison of results against observations.

7.7 Summary
In this chapter we provided a detailed description of the new combined mass
approach for approximating coupled equations with overlapping domains with
moving interfaces and free boundaries by the moving mesh method based on
conservation.

The combined mass approach was applied to a system involving the coupled
equations of two competitive species with overlapping domains. The simulations
for the one-dimensional Cartesian coordinate system were derived for different
initial data and parameter values while we also demonstrated that the combined
mass approach can also be easily applied to the radial case (2-D) as well. The
illustrations presented give confidence that the new approach is suitable for ap-
proximating such coupled systems and provides a more neat, efficient and less
computationally expensive process as it avoids the interpolation of the meshes
at each time step. The results of this chapter indicate that the methodology
can be generalised for more complex equations that are able to more realistically
describe the species’ behaviour and evolution through time.

In certain ecological contexts, reaction-diffusion models may not adequately de-
scribe how organisms move and disperse through space. Besides the classical
Laplacian diffusion of Chapters 6 and 7 and the non-linear diffusion of Chapter
5, ecological modellers have included an advection term, as the one in Chapter 3
to describe the ability of living organisms to sense the stimulating signals in the
environment and adjust movements accordingly [112]. Many authors have mod-
elled the directed movements of species either through motion along gradients
(taxis) or through cross/self-diffusion terms [48, 188].

This is the incentive for the study of the SIR (susceptible-infected-recovered)
model in the following chapter. The SIR system includes self- and cross-diffusion
which describe self-isolation and social distancing of individuals where the spread
of the disease in the domain is modelled by a moving boundary.

In the next chapter we apply the concept of combined masses, as described in
Chapter 7, to an epidemic SI(R) model with Fickian diffusion while later on,
we apply the method to a system of multi-sub-populations (susceptible-infected-
recovered-vaccinated) with density-dependent non-linear diffusion as the one pre-
sented in Chapter 5.
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Chapter 8

Numerical Solution of a
Reaction-Diffusion-Advection
Epidemic Model with a Moving
Boundary

This chapter considers the application of the moving mesh finite difference method
based on mass conservation using the combined mass approach, as described in
Chapter 7, for an epidemic model with Fickian diffusion describing the random
motion of the sub-populations. Bias velocity is also incorporated in the model by
the use of cross- and self-diffusion reflecting the effect of social distancing and self-
isolation applied by individuals. The spread of the disease through the domain
is modelled in the system by a moving boundary. We extend our study of the
SI(R) (Susceptible-Infected-(Recovered)) system to a multi-species model consist-
ing of four sub-populations (SIRV) (Susceptible-Infected-Recovered-Vaccinated)
and demonstrate the application of the method on this multi-species system with
non-linear density-dependent diffusion as described in Chapter 5.

8.1 Chapter Overview
Mathematical modelling is an effective tool for dealing with the evolution of
disease outbreaks. This work outlines the importance of a particular SI(R) model
with cross- and self-diffusion terms which describe the physical distancing and
self-isolation applied by individuals. The motive is to gain useful predictions in
the context of the impact of intervention in decreasing the number of infected-
susceptible incidence rates and avoiding the risk of a rapid increase in demand
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for medical services and, ultimately, the exhaustion of hospital resources and
space. The most significant feature of the models discussed in this chapter is
the moving, inner boundary, which describes the spread of the virus. A moving
mesh finite difference method is used in which the node movement is based on
the local mass preservation of the sub-populations combined mass. Illustrations
reveal that social interactions play a vital role in disease transmission: in the
spread of the disease through the domain and in the number of infections. We also
demonstrate that the initially infected radius h0 is also important in the spreading
of the disease. Even if the reproductive parameter Re > 0 the disease will not
spread in the whole area if h0 is sufficiently small. The method is also applied
to a system of multi-sub-populations (SIRV) and the results give confidence that
the combined mass approach is also suitable for systems consisting of more than
two species (as illustrated so far).

8.2 Introduction
Mathematical models have long been used in epidemiology to provide quantitative
information on the spread of diseases and to provide useful guidelines to outbreak
management.

In particular, epidemic models have attracted great attention lately in math-
ematical ecology due to the outbreak of pneumonia caused by a novel coro-
navirus (COVID-19) [46, 5, 138, 41, 156, 114]. The well-known SIR models
which are based on ordinary differential equations have been widely used in the
past to describe the quantitative epidemic evolution dynamics of many diseases
[108, 25, 180]. Such models classify the population into three subgroups namely
‘susceptible’ (S), ‘infected’ (I) and ‘recovered’ (R). In [46] authors used a simple
prototype of a SIR model, first proposed by Kermack and McKendrick [93], to
model the spread of COVID-19 in different communities. One can describe the
population evolution through time by the following system of ordinary differential
equations

dS

dt
= −βS(t)I(t),

dI

dt
= βS(t)I(t)− αI(t)− λI(t),

dR

dt
= λI(t),
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where β > 0 is the infection rate, λ > 0 is the recovery rate and α is the rate of
death due to the disease.
We can easily observe that for an epidemic to occur the number of infected should
increase over time, i.e.,

dI

dt
> 0

implying that
βSI − αI − λI > 0

giving
βS

α + λ
= Re > 1,

where Re is defined to be the basic reproductive rate as the fate of the evolution of
the disease depends upon it. The value of Re can determine whether the disease
will lead to an epidemic or if it will die out quickly, e.g., if dI

dt
< 0 =⇒ Re < 1 the

infected population will decrease monotonically to zero and if dI
dt

> 0 =⇒ Re > 1
will increase.

Even though results are shown to be useful both quantitatively and qualita-
tively, the model does not include many real-time complexities associated with
the spread of the virus. A crucial drawback of such models is that they describe
only spatially homogeneous dynamics.

A key issue in epidemic modelling is the formation of spatial patterns. Accounting
for the spatial dynamics of the model can alter the outcome and the spread of the
epidemic, especially in the case of COVID-19 where no vaccines were available for
over a year after the outbreak of the pandemic and the isolation of the diagnosed
infected and social distancing were the only measures available to combat the
spread of the virus.

Therefore, disease-spreading theories such as the SIR model, have been extended
to reaction-diffusion equations [57, 43, 19, 173]. These models, however, are based
on the assumption that individuals disperse with a random diffusion, based on
the Brownian motion, which does not incorporate general physical distancing and
self-isolation applied by individuals. In general, reaction-diffusion systems in the
context of population modelling only account for the interactions of individu-
als through the reaction terms and do not account for the influence of species
interactions on the individuals’ movement.

In certain ecological contexts, reaction-diffusion models may not adequately de-
scribe how organisms move and disperse through space [139]. Hence, many ecolog-
ical and biological studies have examined a variety of other dispersal mechanisms,
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especially those including density-dependent dispersal, in order to better model
the motion of individuals beyond purely random movement [157].

When it comes to modelling living organisms one of the characteristic features is
their ability to sense the stimulating signals in the environment and adjust move-
ments accordingly. Species may be either completely ignorant of the surrounding
environment nor will their movement perfectly track regions with better environ-
mental conditions. More realistically, species should be modelled as a combina-
tion of both random and biased conditions. For instance, adding some amount
of random motion to a purely directed movement dispersal strategy could help
an individual escape a local environmental trap to find some distant but better
sources [6]. This can be achieved by the addition of an advection term. Shigesada
et al. [148] proposed cross-diffusion models to either describe species’ tendency to
avoid overcrowding or to model the directed movement of species towards better
recourses. Over the past few decades, ecological modellers have included directed
movements of species either through motion along gradients (taxis) or through
cross/self-diffusion terms [92, 48, 63, 188, 109, 130].

The use of cross-diffusion to model the avoidance of the infected population by
the susceptible is presented in [150] where in [22] authors suggested a spatially
two-dimensional reaction-diffusion system for modelling the susceptible and in-
fected populations when the spatial pattern formation is driven by cross-diffusion.
They set the non-linear cross diffusion term (by which the susceptible population
avoids the infected) to depend on the number of infected individuals, as aware-
ness increases when there is an increase in infections. In [155] a two-dimensional
SIR model is presented with a dynamical density functional theory to incorpo-
rate both self-isolation and social distancing. Most prior work related to disease
transmission has focused on understanding the disease dynamic in the fixed do-
main.

In [95] and [105] authors studied the reaction-diffusion SIR model with one and
two free boundaries, respectively, and provided useful theoretical results regarding
the existence and uniqueness of results together with the sufficient conditions
for the disease vanishing or spreading. Although these studies investigate the
characteristics of the disease spreading in a moving area the work is still very
limited for numerical methods approximating such free boundary problems.

In this chapter, a particular r-refinement adaptive scheme is described for the
solution of one-dimensional epidemic models on moving domains with additional
cross- and self-diffusion terms to model the effects of social distancing and self-
isolation on the disease spreading. The work we present here preserves mass
(or relative mass as appropriate), causing the mesh to naturally refine where
the solution has high relative density. This is particularly useful for solutions
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with blow-up, or (as demonstrated here) moving free boundaries. In particular,
we apply the moving mesh finite difference method based on mass conservation
[14, 103, 9] with the combined mass approach demonstrated in [15](Chapter 7)
for a system of competitive species. An attractive aspect of the combined mass
approach is that the entire system is approximated on a single mesh and hence
no interpolation of the meshes is required to approximate the coupled equa-
tions. Only one mesh velocity is needed to update the nodal positions hence
the approach of combined masses, compared to the standard application of the
MMFDM, where each equation is assigned a unique mesh, is considered to be
neater and less computationally expensive.

The structure of the chapter is as follows. Section 8.3 gives the description of
the SIR model on a free boundary with advection terms in detail. A general
description of the moving mesh method follows together with a relative conser-
vation principle approach and the finite difference implementation. A MMFDM
algorithm based on relative mass conservation is provided which is then used
together with the combined mass approach to approximately solve the reaction-
diffusion-advection SIR equations with a free boundary. In Section 8.8 illustra-
tions are given for a variety of parameter choices observing the effects of social
interactions on the spreading of the disease as well as various factors affecting
the vanishing and spreading of the disease. The multi-species SIRV (susceptible-
infected-recovered-vaccinated) model is presented in Section 8.6 and the applica-
tion of the MMFDM based on the combined mass approach follows which allows
the approximation of the system where illustrations of the results are shown in
Section 8.8. Section 8.9 gives a brief discussion of the results and a potential
future research direction.

8.3 Materials and Methods

8.3.1 The reaction-diffusion-advection SI(R) model with a
moving boundary

We are considering a reaction-diffusion-advection SIR epidemic model with a free
boundary which describes the spreading front of the disease as presented in [95].
We are also incorporating self- and cross-diffusion, similar to the ones in [22]
but with constant coefficients, to model the effects of social distancing and self-
isolation on the spread of the disease in a domain. The system below assumes that
births and deaths due to other causes (apart from the disease) are balanced out
and that the recovered individuals are assumed to be immune to the disease and
can no longer transmit the virus to the susceptible ones. Therefore, we exclude
the particular equation regarding the recovered ones from our model since the
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main scope is to model the spread of the virus through the front.

Therefore, the extended version of the reaction-diffusion-advection SI(R) system
with self- and cross-diffusion with a moving boundary can be described as

∂z

∂t
= δ

∂2z

∂x2
+

∂

∂x

(
z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

))
− βzu x ∈ R, t > 0 (8.1)

∂u

∂t
= δ

∂2u

∂x2
+

∂

∂x

(
u

(
κsi

∂u

∂x
+ κsi

∂z

∂x

))
+ βzu− λu− αu (8.2)

x ∈ Ru(t), t > 0

where z and u denote the susceptible and the infected subpopulation densities
respectively. All the variables and the parameters are described in Table 8.1.
We set the total domain to be denoted by R while Ru(t) is a sub-region in R.
Susceptibles are initially set to occupy the whole domain R while in Ru(t) both
sub-populations co-exist.

Variable/Parameter Description
t time
x space
z the susceptible population density
u the infected population density
δ Diffusion parameter
β Risk of infection
α Virus-induced average fatality rate
λ Recovery rate of infectious individuals
µ Interface condition parameter
κsi cross diffusion pressure due to self-isolation
κsd self-diffusion pressure due to social distancing

Table 8.1: Description of the variables and parameters used in the model.

Inner free boundary conditions
The infected population is spreading through the domain by a moving front which
is denoted by h(t). The infected population density is zero at the moving front
and the equation governing the free boundary corresponds to the well-known
Stefan condition. These two conditions are expressed by

u(x, t) = 0 x ≥ h(t), t ≥ 0
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and
dh

dt
= −δµ

∂u

∂x
(h(t), t) t ≥ 0. (8.3)

The parameter µ is proportional to the preferred population density at the spread-
ing front. For the ecological background of free and moving boundary conditions
refer to [53].

External boundary conditions
For the two external fixed boundaries of the domain R which are denoted by
x = a and x = b (i.e., [a, b]) we use homogeneous Neumann boundary conditions
that imply that the above system is self-contained and there is no migration
across the boundaries, i.e.,

∂u

∂x
= 0 x = a t ≥ 0 (8.4)

and
∂z

∂x
= 0 x = a, x = b t ≥ 0. (8.5)

Cross and self-diffusion
The avoidance of the infected sub-population by the susceptible is incorporated
into the model by the use of a positive non-linear cross-diffusion term ∂

∂x

(
κsiz

∂u
∂x

)
.

This term directs the flow of the susceptible in the direction opposite to the
gradient of u. This, however, does not incorporate general physical distancing
also between the susceptible individuals (which is required if infected persons
cannot generally be identified as such). The repulsion within the susceptible
subgroup is considered by the positive non-linear self-diffusion term ∂

∂x

(
κsdz

∂z
∂x

)
where the flow is into the opposite direction of the gradient ∂z

∂x
. The directed

motion of infected species in the opposite direction of ∂u
∂x

and ∂z
∂x

is described
by similar terms as in the equation of the susceptible. The constant κsi is the
pressure/interaction strength due to the isolation of the infected whereas the κsd

is the self-diffusion pressure due to the social distancing applied by the susceptible
individuals.

We use a velocity-based moving mesh finite difference method based on conser-
vation with the combined mass approach as described in [15] for the numerical
treatment of the above reaction-diffusion-advection SI(R) system with a moving
boundary. The procedure is described below.

8.3.2 Conservation-based moving mesh methods

We introduce a time-dependent space coordinate x̃(x, t) which coincides instan-
taneously with the fixed coordinate x. Consider two such coordinates, x̃(x1, t)
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and x̃(x2, t), in (a(t), b(t)), abbreviated to x̃1(t) and x̃2(t).
The rate of change of the mass in the sub-interval (x̃1(t), x̃2(t)) is given by Leibniz
integral rule in the form

d

dt

∫ x̃2(t)

x̃1(t)

u(ς, t) dς =

∫ x̃2(t)

x̃1(t)

(
∂u(ς, t)

∂t
+

∂

∂ς
(u(ς, t)w(ς, t))

)
dς,

where
w(x, t) =

dx̃

dt

∣∣∣
x̃=x

(8.6)

is a local velocity.
We denote the total mass in the domain (a(t), b(t)) by

θ(t) =

∫ b(t)

a(t)

u(x, t) dx (8.7)

and the mass in the interval (x̃1(t), x̃2(t)) by

θm(t) =

∫ x̃2(t)

x̃1(t)

u(ς, t) dς,

where m specifies the interval (x̃1(t), x̃2(t)). We recall that for problems conserv-
ing the total (global) mass, i.e., dθ

dt
= θ̇(t) = 0, the theory of moving mesh based

on mass conservation is constructed by supposing that partial masses within any
spatial interval is conserved in time, i.e., θ̇m(t) = 0.

For more general problems that do not conserve mass, θ(t) (defined by (8.7))
varies with time hence such an assumption is unreasonable. In such cases, the
theory uses the normalised function u(x̃, t)/θ(t) which gives the relative density
û.

For example, the total relative mass is given by∫ b(t)

a(t)

u(x̃, t)

θ(t)
dx

which equals unity making it compatible to suppose that the local relative mass
given by ∫ x̃2(t)

x̃1(t)

u(ς, t)

θ(t)
dς

is conserved in time.
Therefore, ∫ x̃2(t)

x̃1(t)

u(ς, t)

θ(t)
dς =

∫ x̃2(t)

x̃1(t)

û(ς, t) dς = γ(x̃1(t), x̃2(t)) (8.8)
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is constant in time.
We now make use of the Leibniz integral rule applied to the relative density û

d

dt

∫ x̃2(t)

x̃1(t)

û(ς, t) dς =

∫ x̃2(t)

x̃1(t)

(
∂û(ς, t)

∂t
+

∂

∂ς
(û(ς, t)ŵ(ς, t))

)
dς. (8.9)

The left hand side of (8.9) is zero and the term ∂û(s,t)
∂t

is given by

∂û

∂t
=

∂

∂t

(u
θ

)
=

1

θ

∂u

∂t
− θ̇

θ2
u,

where θ̇ = dθ/dt.
Then (8.9) becomes ∫ x̃2(t)

x̃1(t)

(
1

θ

∂u

∂t
− θ̇

θ2
u

)
dς + [ûŵ]x̃2

x̃1
= 0

and by (8.8), ∫ x̃2(t)

x̃1(t)

(
∂u

∂t

)
dς − θ̇γ (x̃1(t), x̃2(t)) + θ[ûŵ]x̃2

x̃1
= 0,

leading to

[uw]x̃2
x̃1

= −

(∫ x̃2(t)

x̃1(t)

(
∂u

∂t

)
dς − θ̇γ (x̃1(t), x̃2(t))

)
, (8.10)

since θ[ûŵ]x̃2
x̃1

= [uw]x̃2
x̃1

.

Equation (8.10) can be used to obtain the nodal velocities uniquely at all interior
points, provided the flux [uw] is known at a point and that u(x, t) > 0 in the
interior of the domain.
To evaluate θ̇ we integrate (8.9) from a(t) to b(t), assuming that u(x, t) and
w(x, t) are continuous up to the boundary, yielding

θ̇ =

∫ b(t)

a(t)

(
∂u

∂t

)
dx+ [uw]

b(t)
a(t). (8.11)

Then, given θ̇ and w, the updated value of θ and the new position of the points
x̃(x, t) can be evaluated respectively using a time integration scheme, such as the
explicit Euler, which are then used to recover the solution of u(x̃(t), t) by (8.8),
i.e., ∫ x̃2(t)

x̃1(t)

u(ς, t)

θ(t)
dς =

∫ x̃2(0)

x̃1(0)

u(ς, 0)

θ(0)
dς
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implying that ∫ x̃2(t)

x̃1(t)

u(ς, t) dς = θ(t)γ(x̃1(0), x̃2(0)),

where the constant γ is given by (8.8) using the initial data u(x, 0) and θ(0).
Applying a one-point quadrature approximation leads to

u(x, t) =
θ(0)γ(x̃1(0), x̃2(0))

x̃2(t)− x̃1(t)
. (8.12)

Finite Difference method

We now define a finite difference method based on this theory, with the following
notation. Given a time step ∆t > 0 and a fixed number N + 1 of spatial nodes,
choose discrete times tn = n∆t, n = 0, 1, ..., and discretize the interval at each
discrete time tn using the nodal points x̃n

i = x̃i(t
n), i = 0, 1, . . . , N , for which

a = x̃n
0 < x̃n

1 < . . . < x̃n
N = b.

Also define approximations un
i ≈ u(x̃i, t

n), zni ≈ z(x̃i, t
n), wn

i ≈ w(x̃i, t
n), θn ≈

θ(tn) and θ̇n ≈ θ̇(tn).

Before proceeding further to the general algorithm of the moving mesh based on
conservation as given above, we discuss some considerations regarding the time
integration schemes and stability remarks.

Time-stepping and stability remarks

Time-stepping xi(t) In numerical approximation schemes, the size of the time
step is often associated with stability considerations depending on the numerical
method used. A further issue that arises concerning moving mesh methods is
mesh overtaking which occurs when the order of the nodes changes due to the
poor discretization of the problem. Thus, time steps are sought that preserve
the order of the nodes in the case of moving mesh methods and to prevent the
numerical approximations from exhibiting unstable behaviour for both moving
and fixed mesh methods.

For the time integration, the most common choice is an explicit Euler time-
stepping approach which is often used to update the nodal positions at each time
by

x̃n+1
i = x̃n

i +∆twn
i . (8.13)

However, it does not imply that the order of the nodes will be preserved. A
sufficient condition to prevent node overtaking can be derived from (8.13). For
example, assume that at time n the order of the nodes is preserved, then in order
for the nodes i+1 and i to remain ordered after a further time step the inequality
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x̃n+1
i+1 > x̃n+1

i (8.14)

must hold.
Using the explicit Euler scheme (8.13) the inequality (8.14) becomes,

x̃n
i+1 +∆twn

i+1 > x̃n
i +∆twn

i . (8.15)

Rearranging (8.15) to determine a restriction for ∆t gives,

∆t <
x̃n
i+1 − x̃n

i

wn
i − wn

i+1

. (8.16)

For node crossing to occur the inequality wn
i > wn

i+1 must hold which implies
that wn

i −wn
i+1 > 0. The inequality (8.16) only holds if node crossing occurs and

leads us to a restriction in the size of ∆t given

∆t <
x̃n
i+1 − x̃n

i

wn
i − wn

i+1

if wn
i > wn

i+1, (8.17)

and no restriction otherwise.

Even though the condition (8.16) ensures that no node crossing will occur there
are some drawbacks to using the above condition. The first issue that arises with
this requirement of the time step is that it does not guarantee that the time step
will not approach zero and stop the method from proceeding. If for example
the node x̃i+1 is stationary and x̃i moves with a constant velocity wi, as x̃i is
approaching x̃i+1, the time step will be approaching zero. Another drawback is
that even though node crossing is avoided, the condition (8.16) does not imply
stability. Equation (8.16) ensures that x̃n

i+1−x̃n
i > 0 but it does not specify a limit

on how small this interval can be. If for example, we apply a simple quadrature
to the relative conservation principle (8.8) giving

1

θ
(x̃n

i+1 − x̃n
i )u

n
i = γi, (8.18)

where if the x̃n
i+1 − x̃n

i is arbitrarily small then un
i can grow arbitrarily large.

Therefore, even if ∆x̃i (x̃n
i+1 − x̃n

i ) remains positive, non-smooth behaviour (e.g.,
oscillations) can occur when ∆xi is vanishingly small due to build-up of errors.
Moreover, the consequent behaviour of un

i is then also non-smooth due to the
use of conservation, equation (8.18), to get un

i and there is no mechanism for
controlling oscillations in un

i .
However, there are other time-integration schemes which are not restricted by
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the condition (8.17) in the time step size to prevent nodes from overtaking. Such
schemes allow the use of a larger ∆t, still preserving the order of the nodes, but
as in the explicit Euler scheme they do not prevent oscillations in un

i (i.e., when
x̃n
i+1 − x̃n

i is very small).
For example, in [12] Baines proposed an alternative scheme for preserving the
node order which has the same order of accuracy as the explicit Euler scheme.
He focused on the differences between the nodal positions x̃i+1 and x̃i denoted
as ∆x̃i and the differences between the nodal velocities wi+1 and wi denoted as
∆wi. He introduced the following scheme which uses an amplification factor in
the form of an exponential

∆x̃n+1
i = ∆x̃n

i exp

(
∆t

∆wn
i

∆x̃n
i

)
. (8.19)

As shown above, the only way mesh overtaking will occur is if x̃i > x̃i+1 and
therefore having a negative ∆wi. As the exponential is always positive the sign
of ∆x̃i is unchanged in a time step regardless of the sign of ∆wi, thus preserving
the ordering of the nodes. Therefore, given x̃n+1

i at one point we can update the
nodal positions using the differences ∆x̃n+1

i , i.e.,

x̃n+1
i = x̃n+1

0 +
i∑

i=0

∆x̃n+1
i , (i = 1, . . . , N − 1). (8.20)

Again, even if the scheme ensures no mesh tangling, there is no restriction on the
size of ∆x̃n+1

i , i.e., how small ∆x̃n+1
i can be.

Time-stepping θ(t) In updating the total mass θ(t), it is important to ensure
that θn+1 will remain positive so that the condition u > 0 will not be violated.
An explicit Euler scheme, like the one in (8.13), for updating θ does not imply
that θn+1 will remain positive. For example, if θ̇ < 0 the explicit Euler scheme
can lead to a negative θn+1 for large ∆t.

In order to preserve the positive sign of θ even if θ̇ is negative, we also use
the exponential time stepping scheme of (8.19). For example, the first-order
exponential time-stepping scheme for updating θ is

θn+1 = θn exp

(
∆t

θ̇n

θn

)
. (8.21)

Hence, our finite difference moving mesh algorithm for non-mass-conserving prob-
lems is as follows.
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Algorithm

Choose initial node positions x̃0
i , i = 0, 1, . . . N with corresponding approximate

solution values u0
i > 0, i = 0, 1, . . . , N and derive ∆x̃0

i . Then calculate the
approximate relative masses of (8.8) within each interval by,

γi =
1

θ0
(x̃0

i − x̃0
i−1)u

0
i , (i = 1, . . . , N), (8.22)

where θ0, the initial value of θ is given from (8.7) by

θ0 =
1

2

∑
i

(x̃0
i+1 − x̃0

i )(u
0
i + u0

i+1). (8.23)

Then at time tn for n = 1, 2, . . . , given θn, x̃n
i and un

i we compute θn+1, x̃n+1
i and

un+1
i as follows:

1. Evaluate the rate of change of the total mass θ̇n from (8.11) in the form

θ̇n =

∫ x̃n
N

x̃n
0

∂u

∂t
ds+ un

Nw
n
N − un

0w
n
0 .

2. Evaluate the discrete velocity at interior points from (8.10) by specifying
an anchor point, say x̃0,

wn
i =

un
0w

n
0 −

∫ x̃n
i

x̃n
0

∂u
∂t

ds+ θ̇γ(x̃0, x̃i)

un
i

, (i = 1, . . . , N − 1). (8.24)

The equation above can be solved by substituting the governing PDE where
the derivative terms are evaluated by a one-sided approximation and the
integral of the reaction terms by the trapezium rule over the summation∑i

j=0. In order to evaluate γ(x̃0, x̃i) we are summing all γi over the interval
(x̃0, x̃i).
The velocities at the moving boundaries can be extrapolated from the ve-
locity of the interior values. Then we derive ∆wn

i for all the intervals.

3. Evolve both the nodal positions x̃n
i , i = 1, . . . , N − 1, and the total mass θn

from tn to time tn+1 by the exponential time-stepping schemes (8.19) and
(8.21) respectively.

4. Recover the solution un
i at the interior points from (8.8) by

un+1
i =

γiθ
n+1

∆x̃n+1
i

, (i = 1, . . . , N − 1)
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with the approximated solution at the boundaries of the domain un+1
0 and

un+1
N+1 being updated either from given boundary conditions or by extrapo-

lation, depending on the nature of the problem.

The theory and method described above are general and can be applied to a
large range of partial differential equations including equations involving fluid
flow, heat transfer or diffusion as well as equations in mathematical biology and
in other fields.
In the following section, we apply the method described in Section 8.3.1 to the
SI(R) model in epidemiology with a moving boundary ((8.1) and (8.2)).

8.3.3 Numerical solution for a SI(R) system with the dis-
ease spreading front

Since each population occupies a different part of the domain, therefore having a
unique mesh, interpolation would be needed at each time step for each mesh to
approximate both the advection and reaction terms of (8.1) and (8.2). Therefore
we make use of the combined mass approach for the moving mesh method as
presented in [15] (Chapter 7) by considering the combined mass of the two pop-
ulations in regions of species coexistence. This will allow us to solve the entire
system on a single mesh.
Therefore we are considering the mass at a specific location to be the combined
mass of the densities u and z (u + z) and we move the mesh by supposing that
the fractions of the relative mass are preserved in time.
For ease of exposition, we drop tilde(̃ ) for the rest of the chapter.

We start by dividing the domain into two parts R− and R+ separated by the
disease front h(t) which is initially located at x = 0.3 (see Figure 8.1). R−
denotes the overlapping region on the left-hand side of h(t) and R+ depicts the
region on the right-hand side of h(t). Note here that u = 0 in R+.
We create a mesh with N+1 equally spaced time-dependent nodes. At time level
t = tn the mesh points are defined by

0 = x0 < xn
1 < . . . < xn

h < . . . < xN = 1,

where the node xn
h depicts the disease front h(t). Note that from the boundary

conditions, the velocity of the end nodes of the domain is zero. We approximate
the population densities u(x, t) and z(x, t) by un

i and zni , and the velocity w(x, t)
by wn

i . We also define the approximations for θ(t) and θ̇(t) by θn and θ̇n, respec-
tively.
The initial values θ0− and θ0+ of the total masses θ in each region R− and R+, re-
spectively, are estimated from (8.7) using the combined mass of the sub-populations,
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i.e.,

θ(t) =

∫ xh

x0

(u(x, t) + z(x, t)) dx (8.25)

and by the composite trapezium rule (cf. (8.23))

θ0− =
1

2

h−∑
i=0

(x0
i+1 − x0

i )(u
0
i + z0i ) (8.26)

Similarly for region R+ where only z exists

θ0+ =
1

2

N∑
i=h+

(x0
i − x0

i−1)z
0
i , (8.27)

where the constant-in-time relative masses γ
i

are approximated by (8.8), (cf..
(8.22))

γ
i
=

1

θ0−
(x0

i+1 − x0
i )(u

0
i + z0i ), (i = 0, . . . , h−) (8.28)

and

γ
i
=

1

θ0+
(x0

i − x0
i−1)z

0
i , (i = h+, . . . , N), (8.29)

where h− and h+ denote the nodes immediately on the left and on the right of
h, respectively.
Then, at each time-step following the algorithm in Section 8.3.2 we proceed as
follows.

8.3.4 Approximating the interface velocity

We use one-sided approximation for the derivative term of (8.3) to evaluate the
velocity at the boundary h(t),

dh

dt
= −δµ

(
u(h)− u(h−)

x(h)− x(h−)

)
(8.30)

with h− being the node immediately on the left of h.
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8.3.5 Approximating the velocity of the interior points

Starting with region R− and setting the anchor point to be x = 0, by (8.10), the
velocity wn

i can be evaluated by, (cf. (8.24))

wn
i (u

n
i + zni ) = wn

0 (u
n
0 + zn0 )−

∫ xn
i

xn
0

(
∂z(ς, tn)

∂t
+

∂u(ς, tn)

∂t

)
dς + γmθ̇

n
−, (8.31)

where m denotes the interval (xn
0 , x

n
i ).

By substituting (8.1) and (8.2) in (8.31) and since wn
0 = 0 the velocity equation

for the nodes in region R− is,

wn
i =

1

(un
i + zni )

(
γmθ̇

n
−

−
∫ xn

i

xn
0

(
δ
∂2z

∂x2
+

∂

∂x

(
z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

))
+ u(x, t) (βz(x, t)− α− λ)

)
dς

−
∫ xn

i

xn
0

(
δ
∂2u

∂x2
+

∂

∂x

(
κsiu

(
∂u

∂x
+

∂z

∂x

))
− βz(x, t)u(x, t)

)
dς

)
,

provided un
i + zni ̸= 0.

Finally, by performing the integration and the zero Neumann boundary condi-
tions for the node xn

0 ,

wn
i =

1

(un
i + zni )

(
γmθ̇

n
− − δ

∂z

∂x

∣∣∣∣∣
xn
i

− δ
∂u

∂x

∣∣∣∣∣
xn
i

− z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣∣∣
xn
i

− κsiu

(
∂u

∂x
+

∂z

∂x

) ∣∣∣∣∣
xn
i

−
∫ xn

i

xn
0

(−αu(x, t)− λu(x, t)) dς, (8.32)

where the derivatives are approximated by one-sided approximation and the
integration of the reaction terms by the trapezium rule over the summation∑i=1,. . . ,h−

j=0 . The constant γm is evaluated by summing all γi over the inter-
val m, γ(xn

0 , x
n
i ) =

∑i
j=0 γj for i = 1, . . . , h−.

In the same way, we can obtain the velocity equation for the interior nodes of the
region R+ from (8.10), by setting the anchor point x = h.
So, the velocity wn

i in R+ satisfies
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wn
i (z

n
i ) = wn

h(z
n
h) +

∫ xn
i

xn
h

(
∂z(ς, tn)

∂t

)
dς − γmθ̇

n
+, (8.33)

where m denotes the interval (xn
h, x

n
i ).

We then substitute (8.1) in (8.33) giving,

wn
i =

1

zni

(
wn

h(z
n
h) +

∫ xn
i

xn
h

(
δ
∂2z

∂x2
+

∂

∂x

(
z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

)))
dς − γmθ̇

n
+

)
,

(8.34)
since u = 0 in R+, provided zni ̸= 0.
By performing the integration,

wn
i =

1

zni

δ
∂z

∂x

∣∣∣∣∣
xn
i

xn
h

+ z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣∣∣
xn
i

xn
h

− γmθ̇
n
+

 , (8.35)

since u = 0 in R+ the reaction term of equation (8.1) is zero. The derivative
terms can be now approximated by one-sided approximation where γm here is
evaluated by summing all γi over the interval m, i.e., γ(xn

h, x
n
i ) =

∑i
j=h γj for

i = h+, . . . , i.

8.3.6 Approximating the rates of change of the popula-
tions

The rates of change of the total populations in each region can be evaluated by
(8.32) and (8.35) in the region R− and R+, respectively, by setting xn

i in R− at
xi = xh and for the region R+ at xi = xN . A more detailed calculation follows.
In Rh− , by setting xi = xh equation (8.32) becomes,

wn
h(u

n
h + znh) = wn

0 (u
n
0 + zn0 )−

∫ xn
h

xn
0

(
∂z(ς, tn)

∂t
+

∂u(ς, tn)

∂t

)
dς + γmθ̇

n
−,

where m is the interval (xn
0 , x

n
h).

Substituting equations (8.1) and (8.2) and performing the integration and the
boundary conditions the equation for θ̇n in R− is
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θ̇n− = δ
∂z

∂x

∣∣∣∣∣
xn
h

+ δ
∂u

∂x

∣∣∣∣∣
xn
h

+ z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣∣∣
xn
h

+ κsiu

(
∂u

∂x
+

∂z

∂x

) ∣∣∣∣∣
xn
h

+

∫ xn
h

xn
0

(−αu(x, t)− λu(x, t)) dς. (8.36)

Note that summing γm over the interval (xn
0 , x

n
h) gives 1. Again, we approximate

the derivative terms by one-sided approximation and the integration of the reac-
tion terms by the trapezium rule over the summation

∑i=h
j=0. Finally, in R+, by

setting xi = xN equation (8.35) becomes,

wn
Nz

n
N = wn

hz
n
h −

∫ xn
N

xn
h

∂z(ς, tn)

∂t
dς + γmθ̇

n
+, (8.37)

where m here denotes the interval (xn
h, x

n
N).

Since wn
N = 0,

γmθ̇
n
+ =

∫ xn
N

xn
h

∂z(ς, tn)

∂t
dς − wn

hz
n
h . (8.38)

Substituting (8.1) in (8.38), performing the integration and applying the zero
Neumann boundary condition at the right-end boundary gives,

θ̇n+ = −δ
∂z

∂x

∣∣∣∣∣
xn
h

− z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣∣∣
xn
h

− wn
hz

n
h , (8.39)

since summing over γm over the interval (xn
h, x

n
N) gives 1.

The new mesh is obtained at time tn+1 = tn+∆t by the exponential time-stepping
scheme (8.20). Likewise for the new masses in each region by (8.21). For example,
the equation for updating the new node position is given by

xn+1
i = xn+1

0 +
i∑

j=0

∆xn+1
i , (i = 1, . . . , N − 1), (8.40)

where the equation for updating the masses in each region R− and R+, respec-
tively is

θn+1
− = θn− exp

(
∆t

θ̇n−
θn−

)
(8.41)
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and

θn+1
+ = θn+ exp

(
∆t

θ̇n+
θn+

)
. (8.42)

Having found the new location of the nodes and the new masses in each region,
we can now update the population densities u and z in each region at the new
time tn+1.
To get u and z individually in the region R− we can use the Leibniz integral rule
using the updated x-positions in the form

( d

dt

)∫ xn
i+1

xn
i

u dς =

∫ xn
i+1

xn
i

(
∂u

∂t
+

∂

∂ς
(uw)

)
dς (i = 1, . . . , h−) (8.43)

and

( d

dt

)∫ xn
i+1

xn
i

z dς =

∫ xn
i+1

xn
i

(
∂z

∂t
+

∂

∂ς
(zw)

)
dς (i = 1, . . . , h−). (8.44)

Substituting equations (8.1) and (8.2) into the right-hand sides of (8.43) and
(8.44) and performing integration on the right-hand side gives,

( d

dt

)∫ xn
i+1

xn
i

u dς =δ
∂u

∂x

∣∣∣i+1

i
+ κsiu

(
∂u

∂x
+

∂z

∂x

) ∣∣∣i+1

i

+

∫ xn
i+1

xn
i

(βuz − αu− λu) dς + uw|i+1
i

and

( d

dt

)∫ xn
i+1

xn
i

z dς =δ
∂z

∂x

∣∣∣i+1

i
+ z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣i+1

i

+

∫ xn
i+1

xn
i

(βuz) dς + zw|i+1
i .

Through time integration,

un+1
i =

1

xn+1
i+1 − xn+1

i

(
un
i (x

n
i+1 − xn

i ) + ∆t
(
δ
∂u

∂x

∣∣∣i+1

i
+ κsiu

(
∂u

∂x
+

∂z

∂x

) ∣∣∣i+1

i

+

∫ xn
i+1

xn
i

(βuz − αu− λu) dς + uw|i+1
i

))
, (i = 1, . . . , h−)

(8.45)
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with uh = 0 (for all times) from the boundary conditions and

zn+1
i =

1

xn+1
i+1 − xn+1

i

(
un
i (x

n
i+1 − xn

i ) + ∆t
(
δ
∂z

∂x

∣∣∣i+1

i
+ z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣i+1

i

+

∫ xn
i+1

xn
i

(βuz) dς + zw|i+1
i

))
, (i = 1, . . . , h−).

(8.46)

To update z at the node xh we use,

zn+1
i =

1

xn+1
i − xn+1

i−1

(
un
i (x

n
i − xn

i−1) + ∆t
(
δ
∂z

∂x

∣∣∣i
i−1

+ z

(
κsi

∂u

∂x
+ κsd

∂z

∂x

) ∣∣∣i
i−1

+

∫ xn
i

xn
i−1

(βuz) dς + zw|ii−1

))
, (i = h). (8.47)

The integrals in (8.45), 8.46) and (8.47) are approximated using the trapezoidal
rule.
Lastly, to update z in region R+ we use the updated x-positions and θn+1

+ in
equation (8.47) i.e.,

zn+1
i =

γ
i
θn+1
+

(xn+1
i+1 − xn+1

i )
, (h+ ≤ i ≤ N − 1). (8.48)

The algorithm for the approximate solution of the reaction-diffusion-advection
SI(R) model with a free or moving boundary (8.1) and (8.2) using the moving
mesh finite difference method based on relative mass conservation and the com-
bined mass procedure can be summarised as follows.

8.3.7 Algorithm for the SI(R) system

First evaluate the combined mass θ− and θ+ by (8.26) and (8.27) and γ
i
by (8.28)

and (8.29) for each region R− and R+.

Then, at each time step, we proceed with the following calculations:

1. Evaluate the rate of change of mass in each region θ̇n− and θ̇n+ by (8.36) and
(8.39) respectively.

2. Evaluate the velocity of the interface by (8.30). Calculate the nodal veloc-
ities vn+1

i in each region by (8.32) and (8.35). For R− the anchor point is
taken at x0 and in region R+ at xh.
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3. Update the new nodal positions xn+1
i and the new masses θn+1

− and θn+1
+ by

the exponential time-stepping scheme (8.40) for the x-positions and (8.41)
for θn+1

− and (8.42) for θn+1
+ .

4. Obtain un+1
i and zn+1

i in the region R− by the use of the Leibniz integral
rule and the updated nodal positions xn+1

i from equations (8.45) and (8.46)
respectively. The zn+1

i at i = h is evaluated by (8.47).

5. Recover the solution zn+1
i in region R+ by equation (8.48).

8.4 Results
Table 8.1 shows the definition of each model parameter and variable.

The relevant control parameters are κsi and κsd which define the strength of social
interactions and are taken to be greater or equal to zero which corresponds to
repulsive interactions.
The default variables for the simulations given here are

δu = 0.01,

δz = 0.01,

β = 0.75,

λ = 0.20,

α = 0.035,

µ = 3,

κsi = 0.02,

κsd = 0.002.

(8.49)

Let us consider the above parameter values as a base so as to analyse the results
by varying some of them.

The model has been encoded on a 1-D domain defined by 0 ≤ x ≤ 1. At
the initial time, the infected sub-population is set to occupy only a part of the
domain defined by 0 ≤ x ≤ 0.3 with x = 0.3 being the moving interface, and
the susceptible sub-population to exist throughout the domain [0, 1]. We initially
created a mesh with 101 uniformly spaced nodes. We have used a small time-
step value of ∆t = 0.0001 to avoid oscillations and ensure the smoothness of the
results.

At the outset of an epidemic there are no recovered individuals and nearly ev-
eryone is susceptible as the initial infected population is very small compared to
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the whole population. Hence, we initially set the susceptible population number
to approximately equal the number of the total population (S ≈ S + I +R). We
have chosen to present the sub-populations as a fraction of the total population
so we can say that S ≈ 1 at t = 0. Therefore we set the sub-population density
z to be constant throughout the domain at z = 1. Note that we use S and z to
distinguish sub-population numbers from sub-population densities: S is the total
number of susceptibles, while z is the number of susceptibles per unit area, i.e.,
the area under the graph of z at t = 0 as shown in Figure 8.1 equals the number
of the susceptible population S. The same applies to the infected subgroup with
I and u, respectively.
The default parameter values represent an epidemic situation where the disease
has the potential to spread throughout the domain as Re = βS/(α+λ) ≈ 3.2 > 1.
The initial conditions shown in Figure 8.1 are described by the following functions

u(x, 0) = 0.012, (0 ≤ x ≤ 0.15)

u(x, 0) = (x)(0.3− x)× 0.53, (0.15 ≤ x ≤ 0.30)

u(x, 0) = 0, (x = 0.3)

z(x, 0) = 1, (0 ≤ x ≤ 1).

Figure 8.1 shows the initial conditions used for the following simulations with
the sub-populations u and z in green and red colours, respectively. The vertical
dashed line at x = 0.3 separates (initially) the two regions R− and R+.

The colours green, red and blue were used in all the following illustrations to
present u, z and u+z, respectively. The black lines in the next illustrations show
the result of each sub-population at the final time of the simulation.
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Figure 8.1: The initial conditions. Note the different scales on the y-axes.

We ran the simulations up to t = 10 and plotted the results for every 6000 time
step. The sub-population time evolution is shown in Figure 8.2 where the black
colour lines indicate the final densities at time t = 10. We can clearly observe
the increase in the total mass of I, i.e., the number of I individuals, and the
spread of the infected ones in the domain through the moving front. The total
number of susceptible individuals is decreasing as time progresses as well as the
total population.
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Figure 8.2: The evolution through time of the approximated solutions u (green),
z (red) and u + z (blue) plotted for every 6000 time steps up to t = 10. The
results at t = 10 are marked with black colour.

Figures 8.3 show the evolution of the populations at the forward times t = 20
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and t = 40 in Figures 8.3a and 8.3b, respectively. Interestingly we can observe
in Figure 8.3a a decrease in the rate of increase of the infected sub-population
(the green lines are closer together at final times). This is due to the reduction in
the number of susceptibles causing the reproductive parameter of the disease Re

to decrease, i.e., the number of Re is approximately 2.2 compared to the initial
value of Re ≈ 3.2. This effect is clearer in Figure 8.3b where the susceptible
sub-population is stationary for multiple time steps up to t = 40.
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(a) The approximated solution up to t = 20.
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(b) The approximated solution up to t = 40.

Figure 8.3: The evolution of the approximated solution plotted for every 6000
time steps up tp t = 20 (a) and t = 40 (b). The sub-population densities u, z
and u + z are marked with green, red and blue colour, respectively, where the
results at t = 20 and t = 40 are shown in black colour.

Figures 8.4 show the results up to t = 100 with (8.4a) and without (8.4b) the
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social interaction terms. This set of results allows us to see the effect of social
distancing and self-isolation over the course of time. We ran the results without
including the social interaction terms (cross- and self-diffusion), therefore random
diffusion is the only dispersal mechanism in both equations, the results of which
are shown in Figure 8.4b. The final sub-populations are shown in black dotted
lines. At t = 100 the infected population (green) approaches zero and the disease
has attenuated while the susceptible and the total population (red and blue)
are now stabilised at a constant population density throughout the domain at
approximately u + z ≈ z ≈ 0.3. Comparing the two graphs we notice that in
the case of the inclusion of social interaction terms (Figure 8.4a), the infected
population is more contained regarding both the size of the infected population
and the infected radius (spread of the disease through the domain). At the final
time t = 100, the susceptible population which has not been infected is higher in
Figure 8.4a compared to Figure 8.4b.
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(a) The approximated solution with the social interaction terms up to
t = 100.
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(b) The approximated solution without the social interaction terms up
to t = 100.

Figure 8.4: The evolution of the approximated solutions with (a) and without
(b) the social interaction terms, plotted for every 6000 time steps up to t = 100.
The sub-population densities u, z and u+ z are marked with green, red and blue
colours respectively where the results at t = 100 are shown in black dotted lines.

We also ran the program with various values of κsi while keeping κsd constant.
With κsd kept at 0.002 we set κsi to take values so that κsi = 2κsd, κsi = 4κsd,
κsi = 6κsd, κsi = 8κsd and κsi = 10κsd. We ran the model up to t = 15 with
all other parameters kept at their values as shown in (8.49). In Figure 8.5b we
plotted the results to see the effect of different κsi values on the disease front
position and in Figure 8.5a the effect of κsi on the final mass of the infected
population θI . The results demonstrate that social distancing and self-isolation
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cannot change the fate of the disease but can slow its spread.

0 2 4 6 8 10
0.41

0.42

0.43

0.44

0.45

0.46

In
te

rf
a
c
e
 p

o
s
it
io

n

(a) The interface position with different values of κsi/κsd.
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(b) The infected sub-population with different values of κsi/κsd.

Figure 8.5: The effect of different values of κsi/κsd on the interface position and
the infected sub-population.
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Other parameter choices We ran a sensitivity analysis by varying one pa-
rameter at a time to test the robustness of the results and to increase the under-
standing of the relationships between the input parameters and their effect on
the system. For the first simulation, we ran the program setting µ = 0.4 instead
of 0.3. The results are illustrated in Figures 8.6a and 8.6b for t = 20 and t = 40
respectively. Comparing the result with Figures 8.3a and 8.3b where µ = 0.3 we
can clearly observe the increase in the infected sub-population density in the case
of µ = 0.4. Apart from the overall increase in the density of the infected, the
virus has spread to almost the whole domain with h ≈ 0.9 at t = 40.
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(a) The approximated solution up to t = 20 with µ = 4.
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(b) The approximated solution up to t = 40 with µ = 4.

Figure 8.6: The evolution of the approximated solution with µ parameter at
µ = 0.4 plotted for every 6000 time steps for t = 20 (a) and t = 40 (b). The
subpopulation densities u, z and u+z are marked with green, red and blue colours
respectively where the results at t = 20 and t = 40 are shown in black colour.

192



The second simulation of which the results are illustrated in Figure 8.7, includes
the variation of the infected rate β = 1 instead of 0.75 (Figure 8.3a). Therefore
the reproductive parameter of the disease is initially at approximately 4.3 instead
of 3.2. The results in Figure 8.7 reflect the effect of the increased Re with an
overall increase in infected mass. Moreover, the final position of the disease front
is at h ≈ 0.7 instead of h ≈ 0.46, as observed in Figure 8.3a.
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Figure 8.7: The evolution through time of the approximated solutions u (green),
z (red) and u+z (blue) with β = 1 plotted for every 6000 time steps up to t = 20.
The results at t = 20 are marked with black colour.

Figure 8.8 shows the results of setting λ = 0.4 instead of 0.2 ran up to t = 40.
The infected overall mass is much less than the one in the results of 8.3b. This is
because the infected ones are recovering fast enough affecting the pace by which
the sub-population is increasing. Hence, the susceptible population density is
higher compared to the results in Figure 8.3b.
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Figure 8.8: The evolution through time of the approximated solutions u (green),
z (red) and u + z (blue) with λ = 0.4 plotted for every 6000 time steps up to
t = 40. The results at t = 40 are marked with black colour.

From the results in Figures 8.6, 8.7 and 8.8, we are able to conclude that our model
and the numerical method produce similar results to what we were expecting to
obtain according to the parameter values being altered.
We also perform a sensitivity analysis to examine how different values of the varied
parameter at each simulation affects the solution. We conclude that small changes
in the parameter (i.e., varying the parameter value by 5% or 10%) resulted in
small changes in the results and vice-versa for big changes in the parameter (i.e.,
doubling the parameter value) which resulted in big changes in the results. All
the parameters in the reaction terms of our model are of great importance as the
reproductive parameter of the disease Re depends upon them.

The simulation with a small infected radius. Figure 8.9 shows the result
of the model without the social interaction terms with the initial position of the
moving boundary at 0.05. The initial data are shown in Figure 8.9a. The spatial
discretization for this example differs from the previous results. We initially
divided the domain by 300 equally spaced nodes. The results are shown in Figure
8.9b, plotted for every 6000 time-steps up to t=20 with ∆t = 0.0001. The black
lines show the final sub-population densities at t = 20. The population density
of the infected, u, is approaching zero while the sub-population density of the
susceptibles has stabilised throughout the domain at approximately z = 0.99.
Interestingly, even if the susceptible sub-population density in the region enclosed
by the moving boundary is sufficiently large and the reproductive parameter Re >
1, the infected sub-population density decreases as time advances. Therefore,
apart from the reproductive parameter which plays a vital role in the spreading
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or vanishing of a disease, an important role is also played by the initial position
of the moving boundary. As shown in the paper of Kwang Ik Kim et. al [95],
the disease will not spread to the whole area if the basic reproduction number
Re < 1 or the initially infected radius h is sufficiently small even if Re > 1.
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(a) The initial conditions for u in green, z in red and u+z in blue colour.
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(b) The approximated solution up to t = 20.

Figure 8.9: The simulation with the small initial infected radius. Both graphs
have been plotted with space range 0 ≤ x ≤ 0.15 so that the results are more
visible. The results at t = 20 are marked with black colour.

8.5 Convergence
We begin by examining the convergence of the finite difference moving mesh
method as the number of nodes N increases while keeping ∆t constant for all the
simulations. We solve for t = 20 and compute results for N = 50 × 2N̂−1, N̂ =
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1, . . . , 4. In order to compare the results for different values of N̂ , we denote the
points of the mesh for a particular value of N̂ by xi,N̂ , i = 0, . . . , (50×2N̂−1). We
then compute both x2N̂−1j,N̂ and the sub-population densities (u2N̂−1j,N̂ , z2N̂−1j,N̂)
at t = 20 for each j = 0, . . . , 50 as N̂ increases. We have denoted the boundary
position by xhN̂ ,N̂ where hN̂ = (2N̂−1 × 15) + 1. The new notation gives the
approximation to the values of xi(20), ui(20) and zi(20) at fifty different points
for various N determined by i = 2N̂−1j. Since an exact solution is not available,
we consider the numerical outcome of N̂ = 5 as the exact as it is supposed to
be the more accurate one. Let us denote outcome of the case N̂ = 5 by ū2N̂−1j,N̂

and z̄2N̂−1j,N̂ at the calculated mesh points and x̄hN̂ ,N̂ the boundary position, at
t = 20. We anticipate that the errors | ū2N̂−1j,N̂−u2N̂−1j,N̂ | , | z̄2N̂−1j,N̂−z2N̂−1j,N̂ |
and | x̄hN̂ ,N̂ − xhN̂ ,N̂ | will decrease as N̂ increases, for each i = 0, . . . , 50. We
measure the relative errors by calculating the 2-norms of the population densities
ui and zi and the maximum normal of xh. For example, the calculation of ui and
xh error is of the following forms

EN(u) =

√√√√∑50
i=0(ū2N̂−1j,N̂ − u2N̂−1j,N̂)

2∑50
i=0(ū2N̂−1j,N̂)

2

and

EN(xh) =
x̄hN̂ ,N̂ − xhN̂ ,N̂

x̄hN̂ ,N̂

,

for N̂ = 1, . . . , 5, N = 50, 100, 200, 400. We may examine the order of convergence
with respect to space. When ∆x is varied with ∆t held constant, we expect a
fixed non-zero component of the temporal error, so we may estimate the order
of convergence by looking at the rate at which the differences between successive
errors decrease.

We assume

EN = A(∆x)p + B(∆t)q,

where the EN are the errors for each N , A and B are constants and p and q are
the rates of convergence with respect to space and time, respectively. Since we
are only accounting for spatial errors and with ∆x halving, we have

EN = A(∆x)p and E2N = A(∆x/2)p.

To eliminate A we divide E2N by EN , giving the following expression for p
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p = − log2

(
E2N

EN

)
. (8.50)

The Table below 8.2 shows the convergence of the approximate solutions u, z and
u+ z and the position of the moving boundary xh where we halved ∆x for each
simulation while keeping ∆t constant. EN(u) and EN(z) denote the error of the
approximate solutions u and z while EN(xh) is the error of the moving boundary
position.

N Error p

50

EN(u) 4.2× 10−2 -
EN(z) 5.2× 10−2 -
EN(xh) 2.6× 10−2 -

100

EN(u) 1.7× 10−2 1
EN(z) 2.3× 10−2 1
EN(xh) 1.2× 10−2 1

200

EN(u) 5.9× 10−3 2
EN(z) 9.8× 10−3 1
EN(xh) 5.3× 10−3 1

400

EN(u) 1.9× 10−3 2
EN(z) 3.3× 10−3 2
EN(xh) 1.8× 10−3 2

Table 8.2: Relative errors for u, z and xh with rates of convergence using the
exponential time-stepping scheme observed by halving ∆x while keeping ∆t con-
stant.
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Figure 8.10: Comparison of l2 errors in the solution and the magnitudes of the
errors in the interface node position for the SI(R) in one space dimension, at
T = 20 for a constant value of ∆t in all simulations.

From Table 8.2 we observe that EN(u), EN(z) and EN(xh) decrease as the num-
ber of nodes (N) increases for the moving mesh finite difference method. This
suggests that as the number of nodes increases, both the solutions ui(t) and zi(t)
and the boundary position xh(t) are converging to the exact solution (approxima-
tion solution with N = 400). Figure (8.10) shows the convergence of the errors of
the approximated solutions u and z as well as the error of the interface position
at t = 20 as the mesh resolution is increased. The slopes of orders 1 and 2 are
plotted for reference. The p values indicate that the rate of convergence increase
for both the numerical solution and numerical boundary position in effect to the
increase in spatial nodes.

To check our results we have also examined the convergence of the finite difference
moving mesh method for the above SI(R) reaction-diffusion-advection equation
by halving ∆x while adjusting ∆t accordingly so that in Case 1 the value of
∆t/∆x2 is kept constant and in Case 2 the value of ∆t/∆x is kept constant for
all the simulations. The exact procedure was carried out as the one described
above. We examined the order of convergence by (8.50).
The tables 8.3 and 8.4 show the results of Case 1 (∆t/∆x2) and Case 2 (∆t/∆x),
respectively which allow the inspection of how the error varies as N increases and
the convergence, given by (8.50), of the approximate solutions u and z and the
position of the moving boundary xh.
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N Error p

50

EN(u) 4.5× 10−2 -
EN(z) 5.3× 10−2 -
EN(xh) 2.8× 10−2 -

100

EN(u) 1.8× 10−2 1
EN(z) 2.3× 10−2 1
EN(xh) 1.2× 10−2 1

200

EN(u) 6.0× 10−3 2
EN(z) 1.0× 10−2 1
EN(xh) 5.7× 10−3 1

400

EN(u) 1.9× 10−3 2
EN(z) 3.4× 10−3 2
EN(xh) 1.9× 10−3 2

Table 8.3: Case 1: Relative errors for u, z and xh with rates of convergence using
the exponential time-stepping scheme observed by keeping ∆t/∆x2 constant.

N Error p

50

EN(u) 4.1× 10−2 -
EN(z) 5.2× 10−2 -
EN(xh) 2.6× 10−2 -

100

EN(u) 1.5× 10−2 1
EN(z) 2.3× 10−2 1
EN(xh) 1.2× 10−2 1

200

EN(u) 6.7× 10−3 1
EN(z) 9.9× 10−3 1
EN(xh) 5.3× 10−3 1

400

EN(u) 2.1× 10−3 2
EN(z) 3.3× 10−3 2
EN(xh) 1.9× 10−3 2

Table 8.4: Case 2: Relative errors for u, z and xh with rates of convergence using
the exponential time-stepping scheme observed by keeping ∆t/∆x constant.
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Figure 8.11: Comparison of l2 errors in the solution and the magnitudes of the
errors in the interface node position for the SI(R) in one space dimension, at
T = 20 for a constant value of ∆t/∆x2 for all simulations.
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Figure 8.12: Comparison of l2 errors in the solution and the magnitudes of the
errors in the interface node position for the SI(R) in one space dimension, at
T = 20 for a constant value of ∆t/∆x for all simulations.

We ran three different cases to examine the system’s convergence with the nu-
merical method by accounting only for spatial errors. In the first one, we ran the
simulations by halving ∆x while keeping ∆t constant. Moreover, we checked the
results by halving ∆x while keeping ∆t/∆x2 constant, and finally, for the last
case, we kept the value of ∆t/∆x constant for all the simulations while halving
∆x. In all three cases, we see that the approximations converge to the exact
solution (approximation solution with N = 400) as the number of nodes in the
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domain increase. Moreover, we observe an increase in the convergence rate as
N increases. Comparing Figure 8.11, and 8.10 as well as the values of p in the
Tables 8.2, 8.3 and 8.4, we observe approximately the same order of convergence
in all three results.

8.6 The reaction-diffusion-advection SIRV sys-
tem with cross- and self-diffusion on a moving
domain

We now consider a mathematical model that focuses on the dynamics of a multi-
sub-populations system. Multi-species communities are the subject of significant
interest in the ecological literature but have been largely neglected by mathe-
matical modellers. The increased complexity of such systems and the difficulties
associated with the solution and analysis of the corresponding models are par-
tially responsible for this neglect. However, considering a system of more than
two species gives insights into the possible direct and indirect impacts species
have on one another in a multi-species assemblage.

In particular, we wish to consider a multi-sub-populations system comprising
the susceptible, infected, recovered and vaccinated subgroups with an alternative
choice of diffusion term other than the standard Fickian diffusion.

We recall from Chapter 3 equation (2.13) that the representation of the species
velocity by the Fickian diffusion is unreasonable as it leads to a diffusion velocity
that tends to infinity as the population density goes to zero.

In the following example of a multi-sub-populations system comprising of the
susceptible, infected, recovered and vaccinated subgroups we have chosen to use
a simple case of the general density-dependent diffusion, as in Chapter 5 equation
(5.2), also referred to as the Porous medium equation. The system presented
here assumes that births and deaths from other causes other than the disease are
balanced out and there are no re-infections.
Therefore the equations for the susceptible, infected, recovered and vaccinated
subgroups respectively, with a density-dependent diffusion, are

∂z

∂t
=

∂

∂x

(
z

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂r

∂x
+

∂z

∂x
+

∂v

∂x

)))
− βzu− ρz x ∈ R, t > 0

(8.51)
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∂u

∂t
=

∂

∂x

(
u

(
∂u

∂x
+ κsi

(
∂u

∂x
+

∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
+ βzu− λu− αu+ ϵβvu x ∈ Ru, t > 0

(8.52)

∂r

∂t
=

∂

∂x

(
r

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂r

∂x
+

∂v

∂x
+

∂z

∂x

)))
+ λu x ∈ R, t > 0

(8.53)

∂v

∂t
=

∂

∂x

(
v

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂r

∂x
+

∂v

∂x
+

∂z

∂x

)))
+ ρz − ϵβvu x ∈ R, t > 0

(8.54)

where
u(x, t) = 0 x ≥ h(t), t ≥ 0

and
h′(t) = −µ

∂u

∂x
(h(t), t) t ≥ 0 (8.55)

and with outer boundary conditions

∂u

∂x
= 0 x = a, t ≥ 0

∂z

∂x
=

∂r

∂x
=

∂v

∂x
= 0 x = a, x = b, t ≥ 0. (8.56)

Here z, u, r and v denote the susceptible, infected, recovered and vaccinated
population densities, respectively, ρ is the vaccination rate and ϵ is the vaccine
inefficacy or efficacy (0 ≤ ϵ ≤ 1). So 1−ϵ represents the vaccine efficacy. If ϵ = 0,
the vaccine offers 100% protection against the disease. The notation of the rest
of the parameters is the same as the ones used for the SI(R) system of which the
description can be seen in Table 8.1.
Again, the system is defined on a domain [a, b] (a = 0 and b = 1) with zero
Neumann boundary conditions (8.56) on the two boundaries which indicates no
immigration across the boundaries. The individuals of the population densities z,
r and v are dispersing throughout the domain while u individuals are spreading
in the domain by the moving interface h of which the condition is given by
(8.55). The region enclosed by the moving interface, where initially all population
subgroups exist, is defined by Ru(t) while R defines the whole domain.
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8.7 MMFDM method for the SIRV system with
a moving boundary

We proceed to the numerical approximation of the susceptible-infected-recovered-
vaccinated system using the moving mesh finite difference method based on rel-
ative mass conservation using the combined mass approach.

We divide our domain into two regions separated by the moving interface. In such
a way we can consider the mass at a specific location to be the combined mass of
the densities z, u, r, and v (z + u + r + v) and we move the mesh by supposing
that the fractions of the relative mass are preserved in time. The region enclosed
by the moving interface is denoted by R− where the region on the right of the
moving interface is defined by R+.

The discretizations given in Section (8.3.2) are augmented by the additional ap-
proximations rni ≈ r(x, t) and vni ≈ v(x, t) and then our finite difference moving
mesh algorithm for the reaction-diffusion-advection SIRV system with a moving
interface is as follows.

We choose the same initial conditions as the ones in Section 8.4, presented by
Figure 8.1. The initial condition of the recovered and vaccinated population
densities are zero throughout [0, 1], i.e., r(x, 0) = v(x, 0) = 0, (0 ≤ x ≤ 1).

The initial values θ0− and θ0+, approximated by θ− ≈ θ−(t
n) and θ+ ≈ θ+(t

n), of
the total masses θ in each region R− and R+ respectively, are evaluated by, (cf.
(8.26) and (8.27))

θ0− =
1

2

h−∑
i=0

(x0
i+1 − x0

i )(u
0
i + z0i + r0i + v0i )

and

θ0+ =
1

2

N∑
i=h+

(x0
i − x0

i−1)(z
0
i + r0i + v0i ),

where the constant-in-time relative masses γ
i

are approximated by, (cf. (8.28)
and (8.29))

γ
i
=

1

θ0−
(x0

i+1 − x0
i )(u

0
i + z0i + r0i + v0i ), (i = 0, . . . , h−) (8.57)

and
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γ
i
=

1

θ0+
(x0

i − x0
i−1)(z

0
i + r0i + v0i ), (i = h+, . . . , N), (8.58)

where h− and h+ denote the nodes immediately on the left and on the right of
h, respectively.

8.7.1 Approximating the interface velocity

The interface velocity is calculated by equation (8.30).

8.7.2 Approximating the velocity of the interior points

The velocity wn
i in R− can be evaluated from (8.10) by setting the anchor point

to be x = 0, (cf.(8.31))

wn
i (z

n
i + un

i + rni + vni ) = wn
0 (z

n
0 + un

0 + rn0 + vn0 )

−
∫ xn

i

xn
0

(
∂z(ς, tn)

∂t
+

∂u(ς, tn)

∂t
+

∂r(ς, tn)

∂t
+

∂v(ς, tn)

∂t

)
dς + γmθ̇

n
−, (8.59)

where m denotes the interval (xn
0 , x

n
i ).

By substituting (8.51), (8.52), (8.53) and (8.54) in (8.59) and since wn
0 = 0 the

velocity equation for the nodes in region R− is,
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wn
i =

1

(zni + un
i + rni + vni )

(
γmθ̇

n
−

−
∫ xn

i

xn
0

(
∂

∂x

(
z

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
− βz(x, t)u(x, t)− ρz(x, t) dς

−
∫ xn

i

xn
0

(
∂

∂x

(
u

(
∂u

∂x
+ κsi

(
∂u

∂x
+

∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
+ βz(x, t)u(x, t)− αu(x, t)− λu(x, t) + ϵβu(x, t)v(x, t) dς

−
∫ xn

i

xn
0

(
∂

∂x

(
r

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
+ λu(x, t) dς

−
∫ xn

i

xn
0

(
∂

∂x

(
v

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
+ ρz(x, t)− ϵβu(x, t)v(x, t) dς

)
,

provided that zni + un
i + rni + vni ̸= 0.

Then, by performing the integration and the zero Neumann boundary conditions
for the node xn

0 and cancelling out the reaction terms, (cf.(8.32))

wn
i =

1

(zni + un
i + rni + vni )

(
γmθ̇

n
−

− zni

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
i

− un
i

(
∂u

∂x
+ κsi

(
∂u

∂x
+

∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
i

− rni

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
i

− vni

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
i

−
∫ xn

i

xn
0

(−αu(x, t)) dς

)
,

(8.60)

where the derivative can be approximated by one-sided approximation and the
integration of the reaction term by the trapezium rule. γm is evaluated by sum-
ming all γi over the interval m, γ(xn

0 , x
n
i ) =

∑i
j=0 γj for i = 1, . . . , h−.
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In region R+ we can evaluate the velocity of the interior nodes of from (8.10) by
setting the anchor point x = h, (cf. (8.33))

wn
i (z

n
i + rni + vni ) = wn

h(z
n
h + rnh + vnh)

+

∫ xn
i

xn
h

(
∂z(ς, tn)

∂t
+

∂r(ς, tn)

∂t
+

∂v(ς, tn)

∂t

)
dς − γmθ̇

n
+,

(8.61)

where m denotes the interval (xn
h, x

n
i ).

We then substitute (8.51), (8.53) and (8.54) in (8.61) giving,

wn
i =

1

(zni + rni + vni )

(
wn

h(z
n
h + rnh + vnh)− γmθ̇

n
+

+

∫ xn
i

xn
h

∂

∂x

(
z

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
− βu(x, t)z(x, t)− ρz(x, t) dς

+

∫ xn
i

xn
h

∂

∂x

(
r

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
− λu(x, t) dς

+

∫ xn
i

xn
h

∂

∂x

(
v

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)))
+ ρz(x, t)− ϵβu(x, t)z(x, t) dς

)
,

since u = 0 in R+. Provided zni + rni + vni ̸= 0 is not equal to zero.
By performing the integration,

wn
i =

1

(zni + rni + vni )

(
wn

h(z
n
h + rnh + vnh)− γmθ̇

n
+

+

[
z

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))]xn
i

xn
h

+

[
r

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))]xn
i

xn
h

+

[
v

(
κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))]xn
i

xn
h

)
,

(8.62)
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since u = 0 in R+ the reaction terms are equal to zero. The derivative terms are
now approximated by a one-sided approximation and γm is evaluated by summing
all γi over the interval m, γ(xn

h, x
n
i ) =

∑i
j=h γj for i = h+, . . . , i.

8.7.3 Approximating the rates of change of the popula-
tions

The rates of change of the total populations in each region can be evaluated by
(8.60) and (8.62) in the region R− and R+, respectively, by setting xn

i in R− at
xi = xh and for the region R+ at xi = xN . A more detailed calculation follows.
In Rh− , by setting xi = xh equation (8.59) becomes,

wn
h(u

n
h + znh + rnh + vnh) = wn

0 (u
n
0 + zn0 + rn0 + vn0 )

−
∫ xn

h

xn
0

(
∂z(ς, tn)

∂t
+

∂u(ς, tn)

∂t
+

∂r(ς, tn)

∂t
+

∂v(ς, tn)

∂t

)
dς + γmθ̇

n
−,

(8.63)

where m is the interval (xn
0 , x

n
h).

Substituting equations (8.51), (8.52), (8.53) and (8.54) and performing the inte-
gration and the boundary conditions the equation for (̇θ)n in R− is

θ̇n− =znh

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

+ un
h

(
∂u

∂x
+ κsi

(
∂u

∂x
+

∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

+ rnh

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

+ vnh

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

+

∫ xn
h

xn
0

(−αu(ς, t)) dς.

(8.64)

Note that summing γm over the interval (xn
0 , x

n
h) gives 1. Again, we approximate

the derivative terms by one-sided approximation and the integration of the reac-
tion terms by the trapezium rule.
Finally, in R+, by setting xi = xN equation (8.61) becomes,

wn
N(z

n
N + rnN + vnN) = wn

h(z
n
h + rnh + vnh)

−
∫ xn

N

xn
h

(
∂z(ς, tn)

∂t
+

∂r(ς, tn)

∂t
+

∂v(ς, tn)

∂t

)
dς + γmθ̇

n
+,
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where m here denotes the interval (xn
h, x

n
N).

Since vnN = 0 and by substituting (8.51), (8.53) and (8.54) and applying the
integration gives,

θ̇n+ =− zni

(
∂z

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

− rnh

(
∂r

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

− vnh

(
∂v

∂x
+ κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

))
h

− wn
h(z

n
h + rnh + vnh).

(8.65)

Note that summing γm over the interval (xn
h, x

n
N) gives 1 and we have a zero

Neumann boundary condition at the right end boundary.
The new nodal positions and the new total masses in each region can be found
using the exponential time-stepping scheme as in (8.40), (8.41) and (8.42).
Having found the new location of the nodes and the new masses in each region,
we can now update the population densities u, z, r and v at the new time tn+1.

To get u, z, r and v individually in the domain we can simply use the Leibniz
integral rule using the updated x-positions in the form.

For example, the population z can be updated by,

( d

dt

)∫ xi+1

xi

z dς =

∫ xi+1

xi

(
∂z

∂t
+

∂

∂ς
(zw)

)
dς, (i = 1, . . . , N − 1).

Substituting equation (8.51) into the right-hand side and performing the integra-
tion on the right-hand side gives,

( d

dt

)∫ xi+1

xi

z dς =δ
∂z

∂x

∣∣∣∣∣
i+1

i

+ z

(
κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)) ∣∣∣∣∣
i+1

i

+

∫ xi+1

xi

(βuz) dς + zw|i+1
i , (i = 1, . . . , N − 1).

Through time integration,
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zn+1
i =

1

xn+1
i+1 − xn+1

i

(
un
i (x

n
i+1 − xn

i )

+ ∆t
(
δ
∂z

∂x

∣∣∣∣∣
i+1

i

+ z

(
κsi

∂u

∂x
+ κsd

(
∂z

∂x
+

∂r

∂x
+

∂v

∂x

)) ∣∣∣∣∣
i+1

i

+

∫ xi+1

xi

(βuz) dς + zw|i+1
i

))
, (i = 1, . . . , N − 1).

(8.66)

The same procedure applies for updating u, r and v throughout the domain by
using (8.52), (8.53) and (8.54), respectively.

8.7.4 Algorithm for the SIRV system

Choose initial node positions x0
i , i = 0, 1, . . . , N with corresponding approximate

solution values z0i , u0
i , r0i and v0i and use them to determine the approximate

masses θ0+ and θ0− by (8.63) and (8.64). Having found the total masses in each
region, we proceed with approximating the relative masses γi of (8.57) and (8.58)
in each region.

Since we have evaluated the required approximations using the initial data, we
proceed at each time step with the following calculations

1. Calculate the rate of change of the total mass in each region R− and R+

by (8.64) and (8.65) respectively.

2. Evaluate the velocity of the interface h by (8.30) and proceed with the
velocity of the interior nodes in each region by (8.60) and (8.62).

3. Update the x-positions (xn+1
i ) and the new θn+1

− and θn+1
+ by (8.40), (8.41)

and (8.42) respectively.

4. Update the population densities zn+1
i , un+1

i , rn+1
i and vn+1

i in each region by
the use of Leibniz Integral rule and the update nodal positions. i.e., (8.66).
The population densities at the outer boundaries zn+1

i , un+1
i , rn+1

i and vn+1
i ,

i = 0 or i = N , can be evaluated by the given boundary conditions.
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8.8 Results
We apply the same discretization of the space and time domains as in Section 8.4
(101 equally spaced nodes, ∆t = 0.0001). The same initial conditions were used
as in Section 8.4 for z and u with the additional zero initial data for r and v,

u(x, 0) = 0.012, (0 ≤ x ≤ 0.15)

u(x, 0) = (x)(0.3− x)× 0.53, (0.15 ≤ x ≤ 0.30)

u(x, 0) = 0, (x = 0.3)

z(x, 0) = 1, (0 ≤ x ≤ 1)

r(x, 0) = 0, (0 ≤ x ≤ 1)

v(x, 0) = 0, (0 ≤ x ≤ 1).

The reproductive rate of the disease for the SIVR model in Section 8.6 takes the
form Re =

β(z+ϵv)
λ+α

.
For the following simulations, we use the parameter values stated in (8.49) with
the additional parameter values ρ = 0.06 and ϵ = 0.8.

We run the simulations at different times to observe the evolution of the disease
through the domain. Figure 8.13a shows the results at t = 10, Figure 8.13b
at t = 20 while the results at t = 40 can be seen in Figure 8.14. In 8.14a we
observe the time evolution of each sub-population at different times and in Figure
8.14b the population densities at time t = 40. In all results, the evolution of the
population densities through time is shown in blue for the total population, red
for the susceptible, in turquoise is the evolution of the vaccinated, and in green
and pink is the time evolution of the infected and recovered, respectively. The
black lines in Figures 8.13a, 8.13b and 8.14a show the final population densities
for each time simulation. Initially, we observe an increase in the population
density of the infected(green), recovered(pink) and vaccinated(turquoise) while
we see a decrease in the density of the susceptible(red) group and in the total
population(blue) density. In Figure 8.13b we see that the vaccinated population
density has remained constant for a few time simulations and has now started to
decrease. At t = 40, as shown in Figure 8.14b we observe a decrease in the infected
population density while the susceptible population density is levelling off at
around 0.03 throughout the space domain. The total population is now consisting
of mostly recovered and vaccinated individuals. The results give confidence that
the combined mass feature of the moving mesh method based on conservation
can successfully handle systems comprising more than two equations.
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(a) The evolution of the approximated solution up to t = 10.
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(b) The evolution of the approximated solution up to t = 20.

Figure 8.13: The evolution through time of the approximated solution at t = 10
(a) and t = 20 (b). The total population is shown in blue while red, turquoise,
green and pink colours show the population densities of the susceptible, vacci-
nated, infected and recovered, respectively. Black lines show the final solution
for each time.
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(a) The evolution of the approximated solution up to t = 40.
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(b) The approximated solution at the time t = 40.

Figure 8.14: The results at t = 40. The evolution of the approximated population
densities through time is shown in (a) where the total population is shown in blue
colour while red, turquoise, green and pink colours show the population densities
of the susceptible, vaccinated, infected and recovered, respectively and the black
lines show the final population densities at t = 40. A clearer representation of
the final solutions of the population densities can be seen in (b).
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8.9 Discussion
In this chapter, we have presented a reaction-diffusion-advection form of the SIR
model with a moving boundary which depicts the spreading of the disease in the
domain. Self- and cross-diffusion which correspond to social distancing and self-
isolation of individuals were examined. Assuming that the recovered individuals
are immune to the disease and can no longer transmit the virus implies that the
spreading of the disease is not being affected by the recovered ones. Hence, we
have only modelled the infected and susceptible sub-populations.

Moving mesh finite difference based on relative mass conservation with a com-
bined mass approach was used to approximate the solution of the SI(R) system.
The combined mass approach allows both equations (susceptible and infected) to
be modelled on a single mesh by considering the mass at a specific location to be
the total mass of the two subgroups. Then, the mesh is generated by conserving
the total sum of local densities at that point.

Since the relative masses are conserved, we suppose that the relative densities
are also preserved by which theory the equations for the nodal velocities are
being constructed and the nodal location is updated at each time. Following the
generation of the new mesh, the new local densities for each species separately can
be obtained by the use of ALE equations. The time integration is accomplished
by the use of the exponential time-stepping scheme which prevents nodes from
overtaking, a property which is not provided by the explicit Euler scheme.

The inclusion of self- and cross-diffusion in the modelling of disease allows the
consideration of interactions of individuals other than through the reaction terms.
The results in Figures 8.4 and 8.5 showed that social distancing and self-isolation
could modify the spread of a disease through the area and the number of infec-
tions. In the case of a disease outbreak, the priority is to decrease the number of
infections and slow the spread of the disease so that the healthcare system can
take care of all the cases.

The results of the sensitivity analysis (Figures 8.6, 8.7 and 8.8) by varying one
parameter at a time, either by a small or large factor, indicate that the system
and the numerical method can produce reasonable behaviour both in terms of the
biological meaning of each parameter and the mathematical modelling aspect.

Many factors can affect the spreading or vanishing of a disease. An obvious
factor is the reproductive parameter Re, where the disease vanishes if Re < 1
and spreads over the whole domain if Re > 1. We have shown in Figure 8.9 that
another parameter affecting the dominance of the disease is the initial position
of the moving boundary. Even if Re > 1, if the initially infected radius h is
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sufficiently small, the disease will die out.

Mathematical modelling theories are effective tools for dealing with the time and
space evolution of disease outbreaks. They provide us with useful predictions in
the context of the impact of intervention in decreasing the number of infected-
susceptible incidence rates.

Apart from the infected-susceptible interactions, it is crucial to observe the effect
of other sub-populations such as the vaccinated ones, which have a huge impact
on the disease evolution. Therefore, we have also approximated a SIRV system
(susceptible-infected-recovered-vaccinated) by the use of the moving mesh finite
difference based on relative mass conservation with a combined mass approach.
The result illustrations indicate that the method is suitable for modelling multi-
species communities with great success.

Apart from the extension of the model to a two-dimensional domain, more so-
phisticated models than the standard SIR model can also be considered, allowing
to incorporate, for example, different age groups or seasonal diseases.

8.10 Summary
In this chapter, we used the moving mesh finite difference method based on the
conservation of the combined masses of the populations considered in the system.
The numerical method allowed us to approximate the solution of a SI(R) model
with a moving boundary on a single mesh. The efficiency of this particular
approach, the combined mass, includes the use of only one velocity equation to
update the node locations as the whole system is approximated on a single mesh
instead of assigning a mesh to each sub-population. This also prevents the need
for interpolation of the various meshes at each time step to approximate the
coupled terms in each equation.

The numerical results provided as illustrations in the chapter, allowed us to ob-
serve the impact of social distancing and self-isolation on the spread of the disease
which has been included in the model by the use of cross and self-diffusion terms.

We also demonstrated the application of the numerical method on a SIRV model,
proving that the new approach based on the conservation of the combined masses
can be used to approximate multi-species systems and efficiently deal with sys-
tems composed of more than two species (as used before).

Some future extensions of the SIRV model considered in this chapter could be
the inclusion of the following:
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• Incubation period: A susceptible that comes in contact with an infectious
will not automatically move to the infected cluster as it takes some amount
of time to display symptoms. How does the inclusion of the incubation
period alter the spread of the disease?

• Age-structured populations: A limitation of the model presented above is
that the rate of infection is average since the model does not consider pre-
existing health conditions, poor quality of healthcare or age. An obvious
adaptation of the model to a more updated and realistic system is the
addition of age-structured populations reflecting the susceptibility to the
disease of the more vulnerable groups, i.e., the old adult group.

• Vaccination efficiency: Now that vaccines are available, UK’s government
has let its hope on the vaccination of individuals and measures such as
social distancing and wearing masks are not compulsory anymore. Is the
vaccination alone able to regulate or stop the spread of SARS-CoV-2? How
many people need to get vaccinated and how are the results affected by the
efficiency of the vaccine?

• Vaccination of children: There were debates in the UK focused on whether
to expand the use of SARS-CoV-2 vaccines in children aged 12 years and
over. Even though there is very good evidence that children who have
SARS-CoV-2 are much less likely to develop severe symptoms and much
less likely to die from the disease than adults, a crucial yet unanswered
question is how the non-vaccination of children could affect the community
as a whole.

In the next chapter, we summarise the work and conclusions of this thesis, and
suggest ideas for future work.
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Chapter 9

Conclusion

This thesis examined the application of numerical methods for the approximation
of various partial differential equations in population dynamics. In particular, the
thesis began by considering a reaction-diffusion-advection parasitoid-host system
with temperature dependence that was numerically solved using a standard fixed
mesh method in two dimensions. The central aim of this investigation was to
observe the effect of global warming on the spatial distribution of the interact-
ing species and community formation. Hence, results were derived using the
maximum reported temperatures of the years 1950 and 2020 and the maximum
temperature predictions for the year 2050 which are shown to be correlated with
the insights gained from the model stability analysis. Although such numerical
techniques have been successfully used in the literature to approximate various
PDEs, their efficacy is limited by accuracy considerations when the solution ex-
hibits a high degree of spatial activity such as a near discontinuity, e.g., at the
top or base of a very vertical part of the solution graph. The challenge is even
greater if such regions of rapid variation in the solution are moving. To resolve
this, it might be better to set a moving point at the discontinuity and replace
the PDE with a jump condition at that point leading to the so-called moving
boundary.

Reaction-diffusion equations for population dynamics with moving boundaries
have been intensively studied analytically in recent years, however, very little
numerical work has been done in this field due to numerical challenges in tracking
free boundaries. Existing work is mostly focused on the stability analysis of the
models while studies on the numerical approximation of such models are very
limited.

Mesh adaptation methods for accurately tracking moving boundaries have evolved
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considerably over recent years, becoming a versatile tool to accurately simulate a
wide range of problems. The application of such methods has concentrated mainly
on the numerical approximation of problems in physics such as heat transfer, gas
or fluid dynamics, propagation in water waves or the two-phase Stefan problem.

In the thesis, we discussed one method which lies in the broad class of mesh
adaptation methods and more specifically in the moving mesh methods. The key
advantage of a moving mesh is its ability to adjust its distribution to focus on
areas of interest such as a moving boundary, inner interface or blow-up. Increasing
the resolution around these features of high activity allows the increase of the
accuracy of the solution. The strategy associated with the particular method used
here, the conservation method, is to use an integral of the underlying solution of
the PDE to preserve a desired quantity, such as mass (i.e., the total number of
individuals in a population as used in the thesis), within each patch of elements
from which the mesh velocity is constructed. This strategy is related to the GCL
method and was first introduced by Baines, Hubbard and Jimack [14] in the
context of the finite element framework and later used in [104] using the finite
difference method where the method was applied to numerically solve problems
describing physical phenomena.

Apart from the standard application of the moving mesh method based on mass
conservation as used in [14] and [104], a new feature of the method is presented in
this work which is referred to as the combined mass approach. In this approach,
the quantity which is preserved within each patch of elements and hence produces
the velocity equation for the mesh nodes is the sum of the local densities of all the
species involved in the system. Hence the name combined mass. This approach is
efficient and neat when dealing with coupled equations with overlapping domains.
Instead of assigning a mesh to each species equation, the whole system is solved
on a single mesh where the mesh is generated by conserving the total sum of local
densities at that point. The attractive aspect of the approach is that avoids the
constant interpolation of the meshes at each time step to approximate the coupled
terms and hence it is considered to be more accurate and less computationally
expensive. Following the generation of the new mesh, the new local densities for
each species separately can be obtained by the use of ALE equations.

In this thesis, we studied and numerically solved various reaction-diffusion-advection
multi-species models describing different ecological phenomena such as predation,
competition or disease models with moving outer or inner boundaries and inter-
faces where species arise, overlap, or disappear. The strategy followed for each
system was first to understand the biological phenomenon we want to model and
the species interactions associated with each relationship. Then the models were
constructed using similar, existing models in the literature. In cases where the pa-
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rameter values were not available from existing studies, we carried out a stability
analysis of the model to get an insight into the parameter values required to pro-
duce biologically meaningful results by looking at the different equilibrium points
of the system. We then applied the appropriate numerical technique according to
the nature of the problem, i.e., the fixed or moving mesh method. The strongest
indicator of which method is the most suitable one is whether the problem being
solved involves any sharp moving features like inner or outer moving fronts or
interfaces, hence the use of a moving mesh method is required to accurately ap-
proximate these regions. All simulations were carried out in MATLAB without
the use of any existing packages. For all systems, we carried out a sensitivity
analysis by varying one parameter value by a very small factor to check the effect
on the results. We can conclude that small changes in the parameters resulted in
small changes in the results. We have also reported illustrations of the results for
various parameter choices concluding that the model and the numerical method
produce reasonable biological results in the effect of the parameter value being
altered.

The main scope of the thesis was to examine the application of numerical methods
to approximate systems regarding population dynamics though great attention
has been given to the models in particular. We studied models which answer
questions of great attention lately in mathematical and biological modelling. For
example, we looked at a parasitoid-prey model with climate influence which can
be used in any predator-prey framework to observe the impact of global warming
on species interactions and their distribution in space. Moreover, due to the
outbreak of COVID-19, epidemic models have attracted great attention. In the
thesis, we provided a SIRV model with cross and self-diffusion describing the
effect of social distancing and self-isolation on the spread of the virus through
the domain.

Systems of competitive species were also extensively studied here. For example,
we looked at a system of two highly competitive species which are spatially seg-
regated and separated by a moving interface. A version of this model was also
considered where the competition between the species is not extremely high to
spatially segregate them. Species coexist in space but still compete for common
resources. In an effort to create more realistic population models, we also con-
sidered a range of advection terms to describe the directed movement of species.
The advection terms presented in the thesis take the form of a cross- and self-
diffusion which describe the attraction or repulsion between individuals of the
same or different populations. Moreover, we looked at an advection term based
on a fecundity gradient which describes the tendency of species to move towards
more favourable parts of the domain which accounts for both environmental con-
ditions and species interactions. Lastly, we also looked at a non-linear density-
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dependent diffusion which can more suitably describe species dispersal compared
to the classical Fickian diffusion, especially for very high or very low population
densities.

From a numerical perspective, we conclude that the moving mesh finite difference
based on conservation and the novel combined mass approach can be used on
a variety of ecological models involving multi-species populations and moving
boundaries, and the methods are capable of simulating complex behaviour. The
results of this thesis are considered proof-of-concept rather than exhaustive and
can be refined in several ways and directions.

9.0.1 Further work

The generalisation of the one-dimensional spatial domain models presented in
the thesis together with the extension of the moving mesh technique to fully
two-dimensional is a priority for future work. The explicit and exponential time-
stepping schemes used are proven to be accurate for a range of problems and
produced stable results, with no mesh tangling, provided that sufficiently small
time steps were taken. We note, however, that when solving real-world prob-
lems, it may be desirable to apply a semi-implicit time-stepping scheme since the
solution over a larger time may be required.

The population models and simulations in the thesis are novel and are suitable
to realistically describe many ecological relationships and real-world situations.
Following on from the acquaintance with the background and formulation of
differential models of real-world problems and numerical techniques, future work
should include the testing and comparison of the behaviour of such models against
empirical data sets and explore how findings and predictions can inform and
advise on different actions that need to be taken to address various ecological
issues.

In doing so, the first step would be to adapt the models’ parameters and domains
in regard to the situation we wish to model. The models in the thesis are already
deployed and are suitable for tackling certain questions, such as how changes in
the resource space and changes in the environment might alter behaviour. A first
attempt to adapt the model in a realistic domain is shown in Chapter 3 where the
model is applied to the Spanish and Portuguese spatial domain and real values
of the average maximum temperatures are used.

The next consideration would be to validate existing models. It would be very
interesting to compare the behaviour of the models against empirical data sets.
The models easily lend themselves to adaptions in the sizes and shapes of the do-
mains and alterations and changes in parameter values without requiring further
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calculations. This adaptability means there is a wide range of potential biological
and ecological systems on which we could now test the models.

The applications of the models presented in the thesis are limitless and can be
proven to be powerful tools that not only provide us with information on current
situations but also allow us to predict the future evolution of species accounting
for many key factors affecting it. The models and the methods used here can be
easily converted into user-friendly software which can be used by experts within
different research fields such as ecologists, epidemiologists or even by the policy
sector where they could input predefined parameters in order to get meaningful
conclusions.
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