Congruent and Similar Subsets in d-space

George Purdy
University of Cincinnati, Cincinnati Ohio USA
george.purdy@uc.edu

Let $f_{d}(n)$ denote the maximum number of similar subsets that can occur among n points in d-space R^{d}, and let $g_{d}(n)$ be the maximum number of congruent subsets that can occur. Clearly $g_{d}(n) \leq f_{d}(n)$. A problem of Erdos and myself posed in 1975 asks to find an upper bound for $\mathrm{g}_{\mathrm{d}}(\mathrm{n})$, and we conjectured that $\mathrm{g}_{\mathrm{d}}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{d} / 2}\right)$. We discuss what is currently known about $\mathrm{g}_{\mathrm{d}}(\mathrm{n})$ and we show that

$$
\mathrm{g}_{\mathrm{d}}(\mathrm{n}) \leq \mathrm{f}_{\mathrm{d}}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{d}-\varepsilon}\right), \text { where } \varepsilon=\varepsilon(\mathrm{d})>0 \text {. }
$$

We also give a survey of related problems and results of Erdos and others. For example, how many congruent or similar triangles can occur in R^{4} and R^{5} ? How many congruent or similar simplices of dimension r can occur in R^{d} ?

