Archaeological excavations at L’Erée, Guernsey, 2011

- Interim report -

Duncan Garrow (University of Liverpool)
Fraser Sturt (University of Southampton)

February 2012
1. Introduction and research background

This report presents the results of our fourth season of archaeological excavation relating to Neolithic and Early Bronze Age occupation at L’Erée on the west coast of Guernsey (Figures 1 and 2). The excavation was carried out in September 2011 on land owned by Mr T. Queripel (Field 336), east of the Prosperity Memorial car park. The excavation was initiated primarily in response to the three previous years’ findings, which had produced a number of settlement-related features within test pits and one larger open area (Garrow & Sturt 2009, 2010, 2011).

Overall, our 2011 excavations revealed further evidence – including post-holes, pits and a ditch – for settlement of Earlier Neolithic1 date, as well as large amounts of Chalcolithic/Early Bronze Age (EBA) material. Altogether, these findings represent a significant addition to our knowledge of the site at L’Erée, and indeed to our understanding of prehistoric settlement in Guernsey more broadly. We would like to take this opportunity to thank the Society of Antiquaries of London for funding this project over the past three seasons making the work described below feasible. Without their support our knowledge of the Neolithic and Early Bronze Age of Guernsey would be much the poorer.

1 We have chosen to use ‘Earlier Neolithic’ here, since Guernsey apparently witnessed its first Neolithic occupation during the first half of the 5th millennium BC, and thus mainland French chronologies cannot be applied in any straightforward way. The first phase of occupation at L’Erée appears to date to c. 4700-4000 cal BC (see below).
The Neolithic/EBA of Guernsey is renowned for the impressive number of burial monuments found within its shores, a picture mirrored across the Channel Islands more widely (Patton 1995; Sebire 2005). In stark contrast, the settlement record of the same period remains poorly understood. Within the Channel Islands as a whole, very few potential Neolithic occupation sites have previously been identified.

Since the 1970s, erosion caused by seasonal storms had been revealing what appeared to be a very promising Neolithic/EBA habitation site at L’Erée. Each year, quantities of pottery and flint/quartz along with occasional settlement-related features (such as hearths) were eroded out of the low cliff face onto the beach below. Concerned by the continuing loss of this vital archaeological material, Barry Cunliffe and Heather Sebire initiated a small-scale excavation at the site in 1998 (Cunliffe & de Jersey 2000). In summary, this work recovered substantial artefactual evidence, two buried horizons and a ditch-like feature, all within two 2 x 4m trenches. This evidence considerably strengthened previous suggestions that the site was indeed a potentially substantial Neolithic and/or EBA settlement.

A proper understanding of settlement practices is vital to our understanding of any archaeological region. In Guernsey, and indeed the Channel Islands more broadly, it is critical that the monumental record is placed within its broader landscape context, and that we gain a better knowledge of the sites where the earliest Neolithic activity on the Channel Islands actually took place. It was this aspect of the site’s research potential, along with the continuing damage caused by coastal erosion – highlighted specifically as cause for concern within a recent Coastal Strategy document drawn up for the island (Royal Haskoning 2007, 48) – that prompted our interest in and investigations at the site.
Building on the results of Cunliffe’s work, we initiated a ground-penetrating radar and borehole survey at L’Erée in March 2008. On the basis of this survey’s results, we subsequently carried out a relatively small excavation (10 x 5m trench) in Field 333 in September 2008 (Garrow & Sturt 2009), followed by another small trench in September 2009. These excavations produced further quantities of predominantly Chalcolithic/EBA material, and enabled us to ascertain in more detail the extent and character of the archaeological deposits in that field.

Our work in 2009 and 2010 focused primarily on Field 336. Overall, prior to the 2011 excavations described here, we had excavated a total of fourteen 2 x 2m test pits, one 2 x 4m test pit, and one 10 x 5m open area excavation in Field 336 (Figure 2). This extensive work had enabled us to establish the character and extent of surviving archaeology to a reasonable degree. Archaeological features identified previously included pits and post-holes (various trenches), several hearths, some of which were stone-lined (Trench 11), a substantial ditch (Trench 7) and a possible stone wall (Trench 4). All of these were situated stratigraphically below the layers containing substantial amounts of Chalcolithic/EBA material. The visible features appeared to be associated with a period of Earlier Neolithic settlement, whilst the Chalcolithic/EBA occupation had resulted in substantial quantities of material, but apparently no detectable features.

This report represents an interim statement of our findings in 2011. Please note that we anticipate bringing all of our work at L’Erée to full publication later this year.

2. Research Strategy for the 2011 excavations

The main research objective of the 2011 excavations described in this report was to resolve the nature of especially the Earlier Neolithic occupation identified within Field 336 in greater detail. In order to do so, we applied a straightforward strategy – simply to open up as large an area as we could manage within the given timescale adjacent to the main cluster of features identified in 2009 and 2010 (in Trench 11). Given the ephemeral nature of the archaeology we were dealing with, and the widely-scattered test pit approach we had employed in previous years, this seemed to us to be the best way to improve our understanding of the archaeology. It is important to note that – for funding and archaeological reasons – we always envisaged 2011 as probably the last year we would carry out work on this site.

3. Methodology

As in previous years, the 2011 trench was machine-excavated to a depth of c. 0.40m. This enabled the rapid removal of the Medieval/Post-Medieval cultivation soil. From that point onwards, all of the deposits were hand-excavated in 0.10m spits, to a maximum depth of 1.48m. In order to avoid confusing terminology, the large open area excavated immediately around 2009’s test pit ‘Trench 11’ has kept the name Trench 11 in 2010 and 2011.

In addition to the structural and material cultural remains, the stratified deposits at L’Erée represent a potentially significant source of data on the changing environment of the Channel Islands throughout the Holocene. As such, a geophysical, coring and sampling programme has been carried out to enable pollen evaluation (undertaken by Dr Rob Scaife), micromorphological analysis (Dr Charly French – see below) and landscape, sediment dynamics and environmental modelling (Dr Fraser Sturt) to be undertaken. The results of these investigations have and will
continue to help us both understand micro level site formation processes, as well as the changing nature of the broader environs.

All trenches were located using a Leica 1200 real time kinematic global position system (RTK GPS) connected to the States of Guernsey correction signal, transmitted via an internet server.

The site archive is currently held at the University of Southampton under the site code LER11. Once the project is fully completed, the entire site archive will be deposited along with all relevant reports at Guernsey Museum.

4. Results

In 2011, just one trench was opened in Field 336 (Figures 2-4). Since it was excavated immediately adjacent to previous trenches, the deposits encountered were essentially the same as those described in previous years: modern topsoil and Medieval cultivation layers, overlying ‘laminated’ pale grey compact sandy silt deposits, overlying mid brown and then dark brown sandy silts (see Garrow & Sturt 2010a, 8-9 for a detailed description of the general stratigraphy of the field).
Archaeological features (all in Trench 11 – 2011 extension)

Figure 4. All features in Trench 11 (2011 features shown in black, 2009 and 2010 features shown in grey)

Feature 34. Pit. Cut [161]: 0.17 x 0.17 x 0.27m deep; circular in plan, vertical sides, flat base. Fill [160]: predominantly comprised of small (c. 5-10cm) unburnt stones within a matrix of light greyish brown sandy silt. This pit was cut from much higher up in the sequence than all previous features. Its stratigraphic position (cut into [159]) suggests that it was associated with the Late
Neolithic/EBA occupation of the site. The function of a pit packed full of stones is difficult to determine.

Feature 37. Pit. Cut [168]: 0.33 x 0.33 x 0.18m deep; sub-circular in plan, concave sides, rounded base. Fill [167]: mid yellow-grey silty sand. This pit presumably represents an ephemeral occupation feature.

Feature 38. Post-hole. Cut [170]: 0.21 x 0.21 x 0.08m deep; circular in plan, steeply sloping sides, rounded base. Fill [169]: dark yellow-brown sandy silt. This post-hole presumably represents an occupation-related feature, and can be compared to those found in 2010.

Feature 39. Pit. Cut [172]: 0.37 x 0.37 x 0.10m deep; circular in plan, concave sides, rounded base. Fill [171]: mid brownish grey sandy silt. This pit presumably represents an ephemeral occupation feature.

Feature 40. Pit. Cut [174]: 0.62 x ?? (0.24 visible) x 0.90m deep; pear-shaped in plan, near-vertical sides, irregular undulating base. Fill [173]: mid brownish grey silty sand with occasional charcoal flecks. This pit presumably represents an ephemeral occupation feature.

Feature 41. Stake-hole. Cut [176]: 0.08 x 0.08 x 0.14m deep; circular in plan, steeply sloping sides, narrow conical base. Fill [175]: mottled brown grey sandy silt with occasional charcoal flecks. This stake-hole presumably represents an occupation-related feature, and can be compare to those found in 2010.

Feature 42. Post-hole. Cut [178]: 0.35 x 0.35 x 0.48 deep; circular in plan, near-vertical sides, flattish base. Fill [177]: brownish grey sandy silt with occasional charcoal flecks. This post-hole presumably represents an occupation-related feature, and can be compare to those found in 2010.

Feature 43. Scoop. Cut [180]: 0.74 x 0.26 x 0.10m deep; flat-sided oval in plan, steep sides, curved base. Fill [179]: mid greyish brown grey silty sand with occasional charcoal flecks. This ‘scoop’ presumably represents an ephemeral occupation feature.

Feature 44. Ditch. Primary cut [182]: ?? (3.80m visible) x 0.60 wide x 0.41m deep; steep sides, flattish base. Primary fill [183]: orange brown silty clay. Re-cut [184]: ?? (3.80m visible) x 1.10 wide x 0.2m deep; steep sides, flattish base. Secondary fill [181]: grey brown silty clay.
Figure 5. Stone-filled EBA pit F34, half-sectioned (0.50m scale)

Figure 6. The butt-end of Ditch F44 (re-cut [184]), showing part of the substantial deposit of pottery recovered close to the base (0.50m scale)
5. Specialist reports

5.1. Prehistoric pottery

In total 1431 sherds (6660 g) of pottery were recovered during our 2011 excavations. Broadly speaking, these shared very similar characteristics to those recovered in 2010 and previous years (see Cooper in Garrow & Sturt 2011 for more details). Notably, a large assemblage (281 sherds, 1916g) of probably earlier Neolithic pottery was recovered from ditch F44. Since a final publication report for all of the prehistoric pottery from the site is due to commence shortly, the information presented here within this interim report necessarily remains minimal at this stage.

5.2. Worked stone

In total 4757 pieces (32kg) of worked stone were recovered during the 2011 excavations. As with the pottery assemblage, this material displayed similar characteristics to that recovered in previous years; numerous pebble cores, scrapers and large amounts of shatter material. As is the case with the pottery, a final report for all excavated lithic material is currently being prepared by Dr Anne Pirie. As such, this interim report offers a brief consideration of quantity and distribution.

Methodology

The assemblages from all four seasons have been analyzed in accordance with best practice, as identified by Andrefsky (2003), Butler (2005) and Edmonds (1995). This includes determination of raw material, reduction sequence, technology and, where appropriate, typological classification. As such, all lithic material has been counted, weighed and in some instance measured prior to the production of the full report.

Distribution and diagnostic material

As figures three and four (below) indicate, there was an appreciable increase in the quantity of material towards the western extent of the trench. In each figure the amount of material recovered has been normalised against the area of excavation to give a “lithics/pottery per metre squared” value. This has enabled direct comparison of quantities recovered over different years and different projects (e.g. Cunliffe and de Jersey’s (2000) earlier work). When all the excavated lithic material (figure 8) is considered, and the distribution of pottery sherds per square metre is taken into account (figure 9), a site level variation in density can be picked out. The highest densities are found closest to the eroding cliff and towards the western edge of the field excavated in 2011.

In addition to the broad spread of material, there were a number of diagnostic lithic artefacts recovered. The most impressive of these was a fragment of a ripple flaked and polished Grand-Pressigny flint blade. This style of knapping, and the distinctive source material is further evidence for both Late Neolithic/Early Bronze Age activity at the site, as well as continued connections to mainland France. As Audouard (2009, 40) has discussed, at the site of Les Fouaillages imported material only comprises <1% of the total assemblage. Work by Hawley (pers. comm.) and the initial analysis carried out here appears to suggest that this low percentage continues through into the Later Neolithic and Early Bronze Age.
Figure 7. Grand-Pressigny polished flint blade (Photographs courtesy of Donovan Hawley)
Figure 8: Map showing the density of lithics recovered per square metre for excavated areas.

Figure 9: Map showing the density of pottery sherds recovered per square metre for excavated areas. Note this image has the potential to be slightly misleading, as it does not take account of variable size or weight of recovered material.
5.3. Soil Micromorphology (Charles French)
McBurney Geoarchaeology Laboratory, Archaeology Division, University of Cambridge, Cambridge, CB2 3DZ

The complete soil profile exposed in Trench 17 (excavated in 2010) afforded the opportunity to sample for combined soil micromorphological and palynological analyses from the full sequence of Neolithic buried soil and thick overlying soil and possibly hillwash deposits. Eight sample blocks (samples 27/1-27/6 from monolith 27, and samples 25 & 28) were taken for micromorphological analysis after Murphy (1986), and were described using the terminology of Bullock et al. (1985) and Stoops (2003). Summary descriptions by sample and depth are presented in Table 1.

Descriptions

The Trench profile was described in the field as follows:

0-10 modern turf
 undulating boundary
10-65 dark greyish brown silty sand with frequent rounded pebbles; possibly a former ploughsoil
65-101 yellowish brown to grey sandy silt with three thin turf/stabilisation horizons; possibly later prehistoric ground surfaces
101-141 brownish yellow sandy silt; much rooted; possible Early Neolithic land surface
141- c. 166 yellowish brown sandy silt loess subsoil (or B/C)
c. 166+cm gravelly head; geological substrate (C)

Sample 28

This uppermost sample (c. 84-92cm) is a pelly or bioturbated, humic fine quartz sand. The upper 2cm (c. 67-69cm) is marked by a thin, undulating and strongly amorphous sesquioxide impregnated horizontal zone of humic fine sand. Below this zone there were a few minor and irregular zones of dusty clay in the voids.

Sample 25

This sample (c. 84-92cm) is essentially a duplicate/overlap sample of the base of sample 27/1 and the upper part of sample 27/2 (see below). It is also a bioturbated, pelly humic fine quartz sand, with a concentration of larger aggregates and greater amorphous sesquioxide impregnation at c. 87-89cm. This same horizon also exhibits a very minor dusty clay component with a few very fine charcoal fragments.

Samples 27/1-4 (75-122cm)

This series of samples is a very fine sandy loam which increasingly contains pure and impure clay down-profile to become a very fine sandy clay loam. The quartz sand fabric is dense and apedal, with a very fine organic ‘dust’ throughout and occasional fine charcoal fragments. There is weak impregnation of the fabric with amorphous sesquioxides (iron oxides and hydroxides) in sample 1, but this increases in samples 27/2-4 such that up to half the fabric is strongly impregnated with amorphous iron in samples 27/3 and 27/4, and the clay and silty clay components are also strongly stained with amorphous iron.
Samples 27/1 and 27/2 (75-99cm) exhibit vaguely defined horizontal striations of several millimetres in thickness between c. 79-83 and 86-92cm respectively, created by greater and lesser degrees of impregnation with sesquioxides. In the field these are pale grey to light brown in colour variation; microscopically, they are variable reddish/pale reddish brown zones. Also, in the upper part of sample 2 (c. 87-89cm), there is a weak expression of humic dust, stronger amorphous sesquioxide formation and greater porosity which may equate to the situation in sample 25.

The clay component is mainly characterised by dusty (or impure) clay in the groundmass, but pure and dusty coatings are evident in the voids. These latter clays often exhibit microlaminations, and/or crescentic laminations within the voids, and their definition and frequency increase markedly in samples 27/3 and 27/4 (99-122cm).

Sample 27/5

Sample 27/5 (122-134cm) is a humic very fine quartz sand. A highly humified black ‘dust’ is present around and adhering to the sand grains, and as small irregular aggregates between the sand grains, with a few amorphous iron replaced plant tissue fragments.

Sample 27/6

The upper 7cm (134-141cm) is a bioturbated, pelley humic very fine quartz sand with a few fine fragments of charcoal and fine irregular aggregates of yellow, highly birefringent clay, as well as irregular zones of amorphous sesquioxide impregnation. This gives an appearance of physical disruption and mixing of this horizon. The lower 5cm below (141-146cm) is also a humic fine sand but with some illuvial pure to dusty clay coatings in the voids, occasionally crescentic, and amorphous sesquioxide impregnation rapidly increasing with depth from c. 5% to 50-80% of the groundmass.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (cm)</th>
<th>Main fabric</th>
<th>Additional features</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>67-75</td>
<td>bioturbated, pelley humic fine quartz sand</td>
<td>at c. 67-69cm is a thin, undulating and strongly amorphous sesquioxide impregnated horizontal zone; at 69-75, few zones of dusty clay in voids</td>
<td>relict turf line (Ah) over humic A horizon, with minor surface disturbance and/or fine hillwash accretion</td>
</tr>
<tr>
<td>25 (1/2 overlap)</td>
<td>c. 84-92</td>
<td>bioturbated, pelley humic fine quartz sand</td>
<td>with a concentration of larger aggregates and greater amorphous sesquioxide impregnation at c. 87-89cm, rare dusty clay in voids and rare very fine charcoal fragments</td>
<td>turf line (Ah) with humic A material above/below, with minor surface disturbance and/or fine hillwash accretion</td>
</tr>
<tr>
<td>27/1</td>
<td>75-86</td>
<td>very fine sandy loam</td>
<td>minor pure and dusty clay coatings; a few crescentic void coatings; laminar aspect from greater/lesser amorphous iron, especially between c. 79-83cm</td>
<td>upper part of a B horizon, with effects of fluctuating groundwater table</td>
</tr>
</tbody>
</table>
very fine sandy (clay) loam
increasing pure and dusty clay coatings, sometimes micro-laminated; a few pure to dusty crescentic void coatings; 86-92cm zone exhibits laminar aspect from greater/lesser amorphous iron
upper 6cm with effect fluctuating groundwater table; possible weaker expression of 87-89cm turf line seen in sample 25; otherwise clay-enriched upper Bt horizon

very fine sandy clay loam
common pure to dusty clay in groundmass; few pure to dusty, micro-laminated, crescentic coatings in voids; all clay strongly impregnated with amorphous iron, and 50% of groundmass also
well developed, strongly clay and amorphous iron enriched Bst horizon

very fine sandy clay loam
as for sample 3
well developed Bst horizon

humic very fine quartz sand
pellet/bioturbated
humic sand, possibly a relict ploughsoil

134-141cm is as for sample 27/5 above;
141-146cm: humic sandy (clay) loam
134-141cm: as for sample 27/5 above; with few fine charcoal fragments and reddish yellow clay; 141-146cm: increasingly strongly impregnated with amorphous sesquioxides
134-141cm: disturbed humic sand, possibly base of a relict ploughsoil (as above); 141-146cm: lower A to weak B to Bts horizon, becoming better developed with depth

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Horizon</th>
<th>Soil sequence number</th>
<th>Soil type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Ah</td>
<td>5</td>
<td>Modern turf</td>
</tr>
<tr>
<td>10-65</td>
<td>B</td>
<td>5</td>
<td>Medieval/post-medieval agricultural horizon, probably with colluvial additions</td>
</tr>
<tr>
<td>65-76</td>
<td>Ah</td>
<td>4</td>
<td>Thin turf line with thin depleted A horizon, with minor surface disturbance and/or colluvial additions</td>
</tr>
<tr>
<td>76-87</td>
<td>Ah</td>
<td>3</td>
<td>Thin turf line with thin depleted A horizon</td>
</tr>
<tr>
<td>87-122</td>
<td>possible Ah over B to Bt to</td>
<td>2</td>
<td>Brown earth soil, subject to illuviation of clay and fine silt, and alternating groundwater table</td>
</tr>
</tbody>
</table>

Table 1: Brief description and interpretations of the micromorphological samples taken from the Trench 17 profile

Interpretation

This is a cumulative soil profile or a sequence of at least five superimposed soils over a depth of c. 1.66m, as summarised in Table 2.
The basal soil (1) is comprised of a quite thick (c. 12cm) humic horizon over a clay-enriched lower horizon (c. 22+cm thick), with increasingly strong impregnation with amorphous iron down-profile. This lower Bt or argillie horizon blends into the loessic-like drift parent material (acting as a B/C horizon), which is dominated by very fine quartz sand, silt and oriented clay, with the whole sequence developed on gravelly head drift geology (or C). Significantly the clays are both pure to impure (or dusty), and often exhibit micro-laminae. This organised illuvial fine material was probably once more common, but has suffered removal by the fluctuating groundwater and concomitant leaching effects. Indeed, this latter feature affects the whole trench profile. There is a strong possibility that this weakly acidic soil supported woodland (cf. Fedoroff 1968; Bullock and Murphy 1979), and this is corroborated by the palynological analyses of near-shore peats carried out nearby by Campbell (2000) which indicate an early Holocene wooded environment in the locale.

Interestingly also, the humic sand above this Bt horizon of soil 1 is present as a fine black to reddish brown ‘dust’ adhering to and in between the sand grains. This humic ‘dust’ feature and the depleted loessic Bt horizon beneath was a consistent feature of both the pre- and post-Neolithic soils in recent investigations on the adjacent island of Herm (French 2011). In particular, the humic dust between the sand grains is possibly a consequence of ploughing, aeration and bioturbation (cf. Macphail et al. 1990). For Herm, it has been suggested that the evident additions of organic matter to the A horizon of the early Holocene soil was essential human management to counteract the depletion of these former woodland soils once cleared. This soil was deliberately receiving organic matter and settlement-derived debris to give it much needed nutrients and organic ‘body’ such that it was usable for arable land.

Above this early Holocene to Neolithic soil there is a superimposed sequence of at least three thin (c. 11-35cm thick), incipient soils which were associated with Late Neolithic to Early Bronze Age cultural material. Each had a period of some stability sufficient to develop a turf horizon. The first of these soils (2; 87-122cm) exhibits a humic Ah over a thin B to Bt horizon with clay illuviation and amorphous sesquioxide impregnation increasing down-profile. The quite strongly developed illuvial clay component suggests that this soil developed over a considerable time period as compared to the two thinner soils (3 & 4) above.

This leaves the question as to how this soil and the succeeding two thinner humic Ah/A horizon soils (3, 76-87cm & 4, 65-76cm) could develop. The rather poorly sorted but consistent very fine to fine sand dominated texture of these soils suggests that there could be a stop/start windblown element of soil movement and deposition from bare and exposed soils in the vicinity. The minor dusty clay presence in a few void areas suggests that could have equally have been a hillwash component contributing to these soils, especially given its sloping and embayed topographical position. This hillwash and/or windblown element equally applies to the thicker and more recent soil 5 above.
Particularly evident in the field were rather indistinct but wavy, pale grey horizons in the lower third of the trench profiles. This is probably a reflection of the fluctuating groundwater table conditions of burial on this site, with the greyer colours indicating weak gleying zones, associated with some leaching, weak acidification and iron movement, in effect incipient podzolisation. This was also observed to a lesser extent in some buried soil profiles (i.e. in Trench O) on Herm (French 2011).

Thus, there are strong similarities with the prehistoric palaeosol sequence observed on Herm (French 2011). The development of a weakly acidic but quite developed argillic brown earth soil on a loessic substrate, probably associated with the development of early Holocene woodland cover, is the soilscape presented to Neolithic settlers. Once disturbed, primarily through human activities, it quickly became prone to drying, wind-blow and/or hillwash effects. The only way to counteract this natural tendency and give this soil some stability was through the addition of organic matter, and with it often midden-like, settlement derived rubbish, and/or by allowing a return to turf grassland conditions. Such management was either not always successful nor routinely practiced, such that eroded soil material repeatedly aggraded on this early Holocene soil, thus forming a series of incipient humic fine sandy soils accumulating above to create the thick soil profiles that are observed today.

6. Discussion

The excavation described within this report produced a series of interesting results, which helped to consolidate our understanding of the site at L’Erée. It is important to note that the main research objective for the season was met: we were able to investigate further important questions arising from the previous three seasons work, relating both to the Earlier Neolithic and to the Chalcolithic/EBA occupation at L’Erée.

Earlier Neolithic occupation

In comparison to 2009 and 2010, the 2011 excavations revealed relatively few features (nine in total). The pits recovered were not artefactually rich, and by and large remain difficult to interpret. The post-holes identified, as in previous years, did not form obvious structures or alignments. Perhaps most surprisingly, we did not identify any more hearth features. While it is difficult to say for certain, given the relatively small size of the area excavated, it is possible that these were confined either to a particular contour (slightly higher than that excavated in 2011), and/or were clustered in a more tightly-defined area than we had anticipated. Ditch F44 was the most notable feature of this season’s work (especially given the substantial assemblage of pottery it contained). This feature was similar in form to the ditch recovered in Trench 16, and appeared to contain very similar pottery (which, unfortunately, being plain, remains difficult to identify – it is probably either late 5th millennium or Early Bronze Age in date (C. Marcigny pers. comm.)). The function of, and relationships between, all of the ditches now identified at L’Erée (in Cunliffe’s 1990 trench 2, and in our trenches 7, 11 and 16) is difficult to determine without excavating the whole area. However, an extensive GPR survey has been conducted in an effort to trace these features. Processing of this data is challenging, as the cut and fill material of the ditches are of almost identical composition. Research over the next few months will resolve this as far as possible.

The features recovered in 2011 were not obviously cut into a soil developed on top of the loess (as some 2010 features had been – see Garrow & Sturt 2011, 19-20). As a result, we can assume
that they were associated with the earlier phases of Earlier Neolithic activity at the site. None of the evidence revealed in 2011 contradicted the suggestion (put forward as a result of previous years’ findings) that this phase of occupation occurred during the latter half of the 5th millennium cal BC.

The presence of the ‘humic dust’ in the basal soil (discussed above) is interesting due to the suggestion that it indicates anthropogenic soil improvement activity and potentially ploughing. This adds another element to our understanding of land use and site formation processes in this area. These data, coupled with the variability in material culture distribution force us to consider the potential time depth of occupation at the site and its periodicity. It is quite possible that activity fluctuated between habitation and cultivation leading to a blurring of the record of these two activities within the same archaeological period. Within our continuing research these issues will be teased apart as far possible through radiometric dating and integration of micromorphology results with the stratigraphic model derived from borehole and GPR survey.

Chalcolithic/EBA occupation

As in previous years, substantial quantities of Chalcolithic/EBA material were recovered within the deeply-stratified buried soils. Interestingly, and importantly, for the first time a feature contemporary with this occupation was recovered. Frustratingly, however, it was a small stone-filled pit of enigmatic function, and thus cannot add a great deal to our understanding of this phase of the site’s use. The presence of substantial amounts of Chalcolithic/EBA material in ‘layers’ rather than clearly-defined features does appear to be fairly typical for the period in the Channel Islands (Patton 1995, 86-88), but this scenario does not make interpretation particularly easy.

As the previous year’s reports made clear, and as now confirmed through the micromorphology (discussed above), one of the interesting issues that has emerged is the degree of landscape instability, frequency of sand blow events or anthropogenic alteration of the landscape occurring at this time. The multiple developing soil horizons evidenced in the Chalcolithic/EBA layers tentatively suggest introduction of organic material to improve soil fertility, as well as possibly recording an increased frequency in sand blows. These are interesting points that will be considered in more detail through on-going research.

Acknowledgements

First of all, it is vital to acknowledge the Society of Antiquaries of London and the Arts and Humanities Research Council, whose research grant funding enabled the excavation to take place at all; we received additional financial support from the University of Southampton and a great deal of support in kind from Guernsey Museums Service. We would also like to thank Mr Terry Queripel, without whose assistance and goodwill the site could never have been excavated at all; he allowed us to carry out yet another year’s excavation in his field (Field 336), provided access to a greenhouse in which we could process the finds, and helped out in many other ways. We are very grateful indeed to Philip de Jersey, Jason Monaghan and Tanya Walls of Guernsey Museums Service for their continuing support for and assistance with the project; to Barry Cunliffe, Ian Kinnes, John Renouf, Chris Scarre and Alison Sheridan for their help and advice; to Heather Sebire for discussions about the history of the site’s archaeology; and to Ian Kinnes, Cyril Marcigny and Hélène Pioffet for their continued and invaluable advice concerning the
Neolithic/EBA pottery. Digimap Guernsey very kindly assisted us in obtaining the correction signal for realtime kinetic GPS. Dan Stansbie helped us to supervise the excavation of Trench 11 with his customary rigour and good humour. Finally, we would like to acknowledge the help and hard work of all those without whom the site would not have been excavated at all: Tom Adams, Lucy Barker, Sophie Bourge, Jonathan Carton, Charlotte Choisy-Guilloux, Barry Cooper, Nicky David, Philip de Jersey, Eleanor de Spretter, Cara Garrow, Tony Hack, Donovan Hawley, Reece Horne, Jody Joy, Jonathan Last, Sophie McGregor, Rodrigo Pacheco-Ruiz, Anna Peacock, Lauren Roth-Brown, Emilie Sibbesson, Robert Smith, Dan Stansbie, Tanya Walls and members of the Junior Société Guernesiaise archaeology section.

References

